Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Electronic Supplementary Information Section

New Journal of Chemistry

Synthesis and characterisation of carbazole-based bipolar exciplex-forming compound for efficient and color-tunable OLEDs

Titas Deksnys, Jurate Simokaitiene, Jonas Keruckas, Dmytro Volyniuk, Oleksandr Bezvikonnyi, Vladyslav Cherpak, Pavlo Stakhira, Khrystyna Ivaniuk, Igor Helzhynskyy, Gleb Baryshnikov, Boris Minaev, Juozas Vidas Grazulevicius

Data analyse of the fabricated devices.

The maximum theoretical external quantum efficiency for the single-layer device using DPNC as emitting layer can be described by the equation:

 $\eta_{ext} = \gamma \times \phi_{PL} \times \chi \times \eta_{out} \qquad (Eq. 1)$

where γ corresponds to the charge-balance factor, ϕ_{PL} is the photoluminescence quantum efficiency, χ is the efficiency of exciton production (χ =0.25 in case of the fluorescence type devices), and η_{out} corresponds to the outcoupling efficiency (η_{out} is usually from 0.2 to 0.3). Indeed, the maximum theoretical external quantum efficiency for the single-layer device was only 0.23% since PLQY of solid layer of DPNC was only of 4.6 %. The obtained max. external quantum efficiency of 0.18 % for the single-layer device is in good agreement with this maximum theoretical external quantum efficiency (**Table 1**).

In the case of the bilayer device, exciplex type emitter formed on the interface between DPNC and BPhen layers was utilized (**Figure 10, main text**). To predict the maximum theoretical external quantum efficiency for the bilayer device, we additionally measured PLQY of the spin coated film of the blend DPNC (50%):Bphen (50%), which was found to be 9.31 ± 2 %. This result is added to the main text of the manuscript. The exciplex type emitters allow harvesting of triplet excitons through intersystem crossing between triplet and singlet levels, resulting in χ values approaching unity (Nature Photonics 6, 253–258 (2012) doi:10.1038/nphoton.2012.31). The maximum theoretical external quantum efficiency of 2.8 % for the bilayer device was calculated using equation 1 and η_{out} =0.3. This value of the maximum theoretical external quantum efficiency is slightly lower than the experimentally obtained max. external quantum efficiency (3.3 %) for the bilayer device probably due to the interface effects (**Table 2**).

Characterization of the bilayer OLED in which TPBi was used as electron-transport interlayer.

Figure S1. EL spectrum of ITO/CuI/DPNC/TPBi/Ca/Al device.

Figure S2. Current density *vs.* voltage (black curve) and brightness *vs.* voltage (blue curve) dependencies for the TPBi-containing OLED device.