Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Quantitative method for analysis of mixtures of homologues and stereoisomers of hemicucurbiturils allows to follow their formation and stability.

Maria Fomitšenko^a, Anna Peterson^a, Indrek Reile^b, Hang Gong^c, Sandra Kaabel, Elena Prigorchenko^a, Ivar Järving^a, Riina Aav^a

^a Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia

^b National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia

^c Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, PR China

Email: riina.aav@ttu.ee

Supplementary Material

Table of Contents

1	HPLC chromatogram of oligomeric mixture and structures of isolated oligomers					
2	HRMS results for isolated oligomers and for cycHC[10, 11, 12]S2					
3	U١	/-measurements	S3			
	3.1	(all-R,R)-cyclohexanohemicucurbit[8]uril				
2	3.2	(all-R,R)-cyclohexanohemicucurbit[6]uril	S3			
3.3	(<i>(all-R,S)</i> -cyclohexanohemicucurbit[6]uril	S4 3.4			
		(R,R)-cyclohex-1,2-diylurea	S4			
3.5 (<i>R</i> , <i>S</i>)-cyclohex-1,2-diylurea						
		4-membered oligomer	S5			
1	3.7	6-membered oligomer	S6			
1	3.8	7-membered oligomer	S6			
4	НР	LC and structures of cyclohex-1,2-diylurea diasteromers modelled by MM	S7			
5	Sta	ability analysis of hemicucurbit[6]uril by HPLC-UV	S8			
6	6 Stability analysis of hemicucurbit[6]uril and hemicucurbit[12]uril by ¹ H-NMR					

1 HPLC chromatogram of oligomeric mixture and structures of isolated oligomers

Figure S1. HPLC chromatogram of oligomeric mixture. Peaks and structures of isolated 4-, 6- and 7-membered oligomers are pointed out.

2 HRMS results for isolated oligomers and for cycHC[10,11,12]

|--|

Compound	Formula	Calculated m/z [M+Na] ⁺	Experimental m/z [M+Na] ⁺
4-membered oligomer	C32H48N8O5	647.3645	647.3654
6-membered oligomer	C47H72N12O6	923.5590	923.5562
7-membered oligomer	C58H84N14O8	1105.6678	1105.6666
(all-R,R)-cycHC[10]	C80H120N20O10	1534.9389	1543.9409
(all-R,R)-cycHC[11]	C88H132N22O11	1696.0338	1696.0319
(all-R,R)-cycHC[12]	C96H144N24O12	1848.1288	1848.1288

3 UV-measurements

3.1 (all-R,R)-cyclohexanohemicucurbit[8]uril

(*all-R,R*)-cycHC[8] with purity of 95 % was used for preparation of stock solution $9.51 \cdot 10^{-5}$ M. Into 2 ml of CH₃CN 20 µl of stock solution was added repeatedly 5 times resulting in solutions with concentrations shown on the Figure S2.

3.2 (all-R,R)-cyclohexanohemicucurbit[6]uril

(*all-R,R*)-cycHC[6] with purity of 86 % was used for preparation of stock solution $6.95 \cdot 10^{-4}$ M. Into 2 ml of CH₃CN 20 µl of stock solution was added repeatedly 5 times resulting in solutions with concentrations shown on the Figure S3.

Figure S3. A) UV-spectra and B) molar extinction coefficient of (*all-R,R*)-cycHC[6] in acetonitrile.

3.3 (all-R,S)-cyclohexanohemicucurbit[6]uril

(*all-R,S*)-cycHC[6] with purity of 96 % was used for preparation of stock solution $8.90 \cdot 10^{-6}$ M. Into 2 ml of CH₃CN 20 µl of stock solution was added repeatedly 5 times resulting in solutions with concentrations shown on the Figure S4.

Figure S4. A) UV-spectra and B) molar extinction coefficient of (all-R,S)-cycHC[6] in acetonitrile.

3.4 (R,R)-cyclohex-1,2-diylurea

Into 2 ml of CH₃CN 20 μ l of (*R*,*R*)-cyclohex-1,2-diylurea stock solution (6.98*10⁻³ M) was added repeatedly 5 times resulting in solutions with concentrations shown on the Figure S5.

3.5 (R,S)-cyclohex-1,2-diylurea

Into 2 ml of CH₃CN 20 μ l of (*R*,*S*)-cyclohex-1,2-diylurea stock solution (7.40*10⁻³ M was added repeatedly 5 times resulting in solutions with concentrations shown on the Figure S6.

3.6 4-membered oligomer

Into 2 ml of CH₃CN 10 μ l of 4-memebered oligomer stock solution (1.5*10⁻³ M) was added repeatedly 5 times resulting in solutions with concentrations shown on the Figure S7.

Figure S7. A) UV-spectra and B) molar extinction coefficient of 4-membered oligomer in acetonitrile.

3.7 6-membered oligomer

Into 2 ml of CH₃CN 10 μ l of 6-memebered oligomer stock solution (1.5*10⁻³ M) was added repeatedly 5 times resulting in solutions with concentrations shown on the Figure S8.

3.8 7-membered oligomer

Into 2 ml of CH₃CN 10 μ l of 7-memebered oligomer stock solution (2.1*10⁻³ M) was added repeatedly 5 times resulting in solutions with concentrations shown on the Figure S9.

Figure S9. A) UV-spectra and B) molar extinction coefficient of 7-membered oligomer in acetonitrile.

4 HPLC and structures of cyclohex-1,2-diylurea diasteromers modelled by molecular mechanics

Figure S10. RP-HPLC chromatogram of (*R*,*S*)- and (*R*,*R*)-cyclohex-1,2-diylurea (46 and 62 μ g/ml, respectively) in chloroform:methanol (1:9).

5 Stability analysis of hemicucurbit[6]uril by HPLC-UV

Figure S11. RP-HPLC analysis of degradation of a homogenous solution of HC[6] in 0,1 M HCl at 65 °C. *solvent peak contains hydrochloric acid aqueous and methanol solution.

6 Stability analysis of hemicucurbit[6]uril and hemicucurbit[12]uril by ¹H-NMR

Figure S12. ¹H-NMR analysis of saturated solution of unsubstituted hemicucurbiturils in 0.1 M HCl in D₂O at room temperature and at elevated temperature on a Bruker Avance III 400 MHz spectrometer. Experimental conditions: 16 scans for HC[6] and 256 scans for HC[12], 30 degree flip angle, 1 second relaxation delay.