Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Permittivity regulating strategy to achieve high-performance electromagnetic wave absorbers with compatibility of impedance matching and energy conservation

Bin Quan^a, Xiaohui Liang^a, Guoyue Xu^a, Yan Cheng^a, Yanan Zhang^a, Wei Liu^a,

Guangbin Ji^{a*}, Youwei Du^b

^a College of Materials Science and Technology, Nanjing University of Aeronautics

and Astronautics, Nanjing, 210016, P. R. China

^b Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China

* Corresponding authors: E-mail: gbji@nuaa.edu.cn (G.B. Ji)

Sample No.	Raw reagents	Hydrothermal conditions
C1	$0.2 \text{ g MoS}_2 + 2 \text{ mL GO} + 58 \text{ mL H}_2\text{O} + 15 \text{ mL anhydrous}$	
	ethanol	
C2	$0.2~g~MoS_2~+3~mL~GO+57~mL~H_2O+15~mL$ anhydrous	
	ethanol	
M1	$0.2 \text{ g MoS}_2 + 4 \text{ mL GO} + 56 \text{ mL H}_2\text{O} + 15 \text{ mL anhydrous}$	
	ethanol	
C3	$0.2 \text{ g MoS}_2 + 5 \text{ mL GO} + 55 \text{ mL H}_2\text{O} + 15 \text{ mL anhydrous}$	
	ethanol	
M2	$0.2 \text{ g MoS}_2 + 6 \text{ mL GO} + 54 \text{ mL H}_2\text{O} + 15 \text{ mL anhydrous}$	150 °C 10 h
	ethanol	150 C, 10 II
M3	$0.2 \text{ g MoS}_2 + 8 \text{ mL GO} + 52 \text{ mL H}_2\text{O} + 15 \text{ mL anhydrous}$	
	ethanol	
C4	$0.2 \ g \ MoS_2 \ + 10 \ mL \ GO + 50 \ mL \ H_2O + 15 \ mL \ anhydrous$	
	ethanol	
C5	$0.2 \ g \ MoS_2 \ + 20 \ mL \ GO + 40 \ mL \ H_2O + 15 \ mL \ anhydrous$	
	ethanol	
C6	$0.2 \ g \ MoS_2 \ + 30 \ mL \ GO + 30 \ mL \ H_2O + 15 \ mL \ anhydrous$	
	ethanol	

Table S1. Experimental parameters (material, temperature, time, and so on) for the preparation of
three MoS_2/RGO composites.

Figure S1. SEM images of flower-like MoS₂ spheres. Scale bar is 200 nm.

Figure S2. SEM images of MoS_2/rGO composites synthesized with 20 mL GO. Scale bar is 200 nm.

Figure S3. The relationship between complex permittivity, impedance matching, attenuation ability and reflection loss for C2 and C6 samples.