Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

Theoretical Study on the thermal cis - trans Isomerization of

Azoheteroarene Photoswitches

Ting-Ting Yin, Zeng-Xia Zhao*, Hong-Xing Zhang*

International Joint Research Laboratory of Nano-Micro Architecture Chemistry,

Laboratory of Theoretical and Computational Chemistry,

Institute of Theoretical Chemistry, Jilin University, 130023 Changchun, China.

*Corresponding author. Tel.: +86 18943121798

e-mail: <u>zhaozx@jlu.edu.cn</u>

zhanghx@jlu.edu.cn

Table S1 Optimized geometry parameters for the *cis* forms of compounds 8 and 11.

				Method					
		B3LYP	CAM-B3LYP	M06-2X	M06	PBE0	MP2	B3LYP ^a	Expt.
8 -cis	$D_1(N_1N_2C_3C_4)$	180.0	180.0	180.0	180.0	180.0	173.8	180.0	169.2
	$D_2(C_6C_5N_1N_2)$	93.8	93.1	91.9	92.7	93.3	114.0	93.5	93.5
11 -cis	$D_1(N_1N_2C_3C_4)$	151.2	147.7	148.7	151.0	151.5	143.6	152.9	154.3
	$D_2(C_6C_5N_1N_2)$	141.1	137.7	136.6	138.8	140.0	140.0	140.7	133.2

Note: Selected bond lengths in Å, bond angles and dihedral angles in ° of the stationary-point geometry that is involved in various functionals as calculated in comparison to the experimental data¹.

^a taken from work of Fuchter.

		$n ightarrow \pi^*$ / λ_{max} ($n \rightarrow \pi^* / \lambda_{max}(nm)$				$\pi \to \pi^* / \lambda_{\max} (nm)$			
	8 -cis	8-trans	11 - <i>cis</i>	11 -trans	8 - <i>cis</i>	8-trans	11 - <i>cis</i>	11 -trans		
B3LYP	413.78	446.81	473.67	446.29	299.47	345.73	310.00	348.23		
CAM-B3LYP	397.39	426.14	455.76	426.95	262.71	327.76	284.32	332.19		
PBE0	407.50	444.43	467.24	446.22	288.68	341.73	300.44	345.17		
M06-2X	431.62	465.16	494.89	464.82	262.88	321.83	284.75	327.69		
M06	432.13	469.22	495.69	469.59	298.78	352.33	307.31	355.75		
MP2	329.20	352.73	374.21	351.76	220.60	289.14	237.49	290.87		
ωB97XD	395.90	430.98	454.62	431.76	261.80	325.81	284.34	330.65		
LC-ωPBE	393.85	423.20	450.20	423.62	242.08	305.99	268.32	312.75		
Expt.	403	417	441	425	275	328	296	335		

Table S2 The absorption band energies of the *trans* and *cis* forms of compounds 8 and 11.

Note: Calculated the absorption spectra in nanometers of the stationary-point geometries that are involved in various functionals as calculated in comparison to the experimental data¹.

				CAM-B3LYP				
		6-31+G(d)	6-31+G(d,p)	6-311+G(d)	6-311+G(d,p)	6-311++G(d,p) ^a	6-311++G(2d,p)	Expt.
8- <i>cis</i>	$n \to \pi^* / \lambda_{max} (nm)$	394.7	394.7	397.2	397.1	397.4	395.5	403.0
	$\pi \rightarrow \pi^* / \lambda_{\max} (nm)$	262.5	262.6	262.5	262.0	262.7	262.6	275.0
8-trans	$n \to \pi^* / \lambda_{max} (nm)$	423.1	423.6	425.2	426.2	426.1	424.4	417.0
	$\pi \rightarrow \pi^* / \lambda_{\max} (nm)$	326.3	326.7	327.4	327.7	327.8	328.5	328.0
11- <i>cis</i>	$n \to \pi^* / \lambda_{max} (nm)$	452.4	452.6	455.5	455.8	455.8	453.8	441.0
	$\pi \to \pi^* \ / \ \lambda_{max} (nm)$	283.0	283.4	284.0	284.0	284.3	284.8	296.0
11-trans	$n \to \pi^* / \lambda_{max} (nm)$	419.2	419.5	422.3	422.0	422.8	421.1	425.0
	$\pi \to \pi^* \ / \ \lambda_{max} (nm)$	325.4	325.9	326.7	326.1	327.1	327.9	335.0

Table S3 The absorption band energies of the *trans* and *cis* forms of compounds 8 and 11.

Note: Calculated the absorption spectra in nanometers of the stationary-point geometries that are involved in various basis sets as calculated in comparison to the experimental data¹.

^a taken from this work.

Fig. S1 Simulated absorption spectra of the *trans* isomer of compound **2** based on the various functionals.

References:

 C. E. Weston, R. D. Richardson, P. R. Haycock, A. J. P. White and M. J. Fuchter, J. Am. Chem. Soc., 2014, 136, 11878-11881.