Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

> Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information

Fine tuning compact ZnO blocking layers for enhanced photovoltaic performance in ZnO based DSSC: a detailed insight using β recombination, EIS, OCVD and IMVS techniques

Sasidharan Swetha, ^{a,b} Suraj Soman, ^{b,c}* Sourava C. Pradhan, ^c Narayanan Unni K. N, ^{b,c}* Abdul Azeez Peer Mohamed, ^a Balagopal Narayanan Nair ^{d,e} and Unnikrishnan Nair Saraswathy Hareesh^{a,b}*

^aMaterials Science and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India.

^bAcademy of Scientific and Innovative Research (AcSIR), New Delhi, India.

^cPhotosciences and Photonics, Chemical Sciences and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram-695019, India.

^dR&D Center, Noritake Co. Limited,300 Higashiyama, Miyoshi, Aichi 470-0293, Japan.

^eNanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box UI987, Perth, WA6845, Australia.

Fig. S1. SEM image of ZnO active layer (depicts the top view of the ZnO active layer, coatings are porous in nature).

Fig. S2. AFM image of bare FTO coated glass.

Fig. S3. Nyquist plots of ZnO devices with various blocking layer thickness.

Fig. S4. Randles circuit used for fitting the impedance data.