Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary Information

(New Journal of Chemistry, Manuscript ID NJ-ART-10-2016-003126)

Tuning the coordination properties of multi-histidine peptides by using a tripodal scaffold: solution chemical study and catechol oxidase mimicking

Ágnes Dancs^{a,c}, Nóra May^b, Katalin Selmeczi^c, Zsuzsanna Darula^d, Attila Szorcsik^e, Ferenc Matyuska^a, Tibor Páli^f, Tamás Gajda^{a,*}

^{*a*} Department of Inorganic and Analytical Chemistry, University of Szeged, Dóm tér 7, H-6720 Szeged, Hungary

^b Institute of Organic Chemistry, Research Centre for Natural Sciences HAS, Magyar tudósok körútja 2, H-1117 Budapest, Hungary

^c Université de Lorraine – CNRS, UMR 7565 SRSMC, BP 70239, 54506 Vandœuvre-lès-Nancy, France

^d Institute of Biochemistry, Biologial Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6724 Szeged, Hungary

^e MTA-SZTE Bioinorganic Chemistry Research Group, Dóm tér 7, H-6720 Szeged, Hungary

^f Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6724 Szeged, Hungary

Supplementary Information content:

The possible structure of CuH_2L^1

EPR parameters calculated in Cu(II)-L² system

ESI-MS of the ligands tren3his and nta3his

UV-Vis and CD spectra of Cu(II)-L¹ and -L² systems

MALDI-TOF MS spectra of mono- and dinuclear Cu(II)- L^2 complexes

pH-, complex and oxygen dependent kinetic measurements in presence of Cu(II)- L^1 and - L^2 complexes

 H_24NC and H_2DTBC binding measurements in presence of Cu(II)- L^1 3:2 complexes

 $\rm H_2O_2$ and DTBQ formation along the catalytic oxidation of 3,5-di-*tert*-butylcatechol by Cu(II)-L^1 and -L^2 complexes

On the possible structure of CuH.₂L¹

Since the CD spectra of CuL^1 and $CuH_{-1}L^1$ are similar, but are very different from that of $CuH_{2}L^{1}$, the presence of two chiral chelate rings { $NH_{2}N_{im}$, N^{-} , NH_{2} } is probably retained after the first amide deprotonation in CuH_1L^1 . The considerable differences between the UV-Vis, CD and EPR spectra of $CuL^{1}/CuH_{-1}L^{1}$ and $CuH_{-2}L^{1}$ (Figures 3-5) indicates the coordination of a further amide nitrogen in the equatorial plane of CuH_2L^1 . This could take place in three different ways, by the formation of (i) $\{NH_2, N^-, N^-, NH_2\}$, (ii) $\{N_{im}, N^-, N_{tert}, N^-\}$ or (iii) $\{NH_2, N, N_{tert}, N^{-}\}$ coordination modes in the equatorial plane of copper(II), with potential axial coordination. Option (i) would result in a similar binding as observed for the analogous complex of dhen [1] or 2HG [2], the only difference is the higher size of the achiral chelate ring between the two amide nitrogens. However, latter complexes, even with additional axial imidazole coordination [2], have clearly distinct UV-Vis and CD spectra as compared to that observed here, *i.e.* the large, unstable eight-membered chelate ring disfavors the formation of (i). In the cases of (ii) and (iii) the chiral contribution arises only from the chelate ring involving a single N-terminal His unit. Although, the differentiation between (ii) and (iii) is not self-evident, the rather unique CD spectrum determined for the species CuH_2L^1 is nearly identical to those of the CuH_2L complexes of Ac-HGG-NH2, Ac-HGGG-NH2, Ac-HGGGW-NH₂ and several other analogues of prion protein octarepeat domain [3-5]. On the other hand, the CD spectrum of the related CuH_2L complex of the non-protected HGG, where the coordination of the chiral chelate ring is similar to that in (*iii*) (cf. { $(NH_2,N^-)*N^-,COO^-$ } in $CuH_{-2}(HGG)$ and $\{(NH_2,N^-)*N_{tert},N^-\}$ in (*iii*)) is considerably different from that of CuH_2L¹, it shows only a positive Cotton effect around 578 nm [3]. These facts strongly support the presence of coordination mode (*ii*) in the equatorial plane of CuH_2L^1 , although the minor contribution of (iii) cannot be ruled out.

[4] A. P. Garnett and J. H. Viles, J. Biol. Chem., 2003, 278, 6795–6802.

^[1] I. Török, T. Gajda, B. Gyurcsik, G. K. Tóth and A. Péter, J. Chem. Soc., Dalton Trans., 1998, 1205–1212.

^[2] Ł. Szyrwiel, J. S. Pap, Ł. Szczukowski, Zs. Kerner, J. Brasun, B. Setner, Z. Szewczuk and W. Malinka, *RSC Adv.*, 2015, **5**, 56922–56931.

^[3] N. I. Jakab, B. Gyurcsik, T. Körtvélyesi, I. Vosekalna, J. Jensen and E. Larsen, J. Inorg. Biochem., 2007, **101**, 1376–1385.

^[5] E. Aronoff-Spencer, C. S. Burns, N. I. Avdievich, G. J. Gerfen, J. Peisach, W. E. Antholine, H. L. Ball, F. E. Cohen, S. B. Prusiner and G. L. Millhauser, *Biochemistry*, 2000, **39**, 13760–13771.

Table S1 Calculated EPR parameters of component spectra detected in the Cu(II)- L^2 system (see also Figure 7). The component spectra (a), (b) and (c) are related to the complexes CuH_x L^2 (x = 2, 1, 0, -1), Cu₂H_x L^2 (x = -1, -2, -3) and CuH₋₂ L^2 , respectively.

	go	A _o /G	a _N	g _x	gy	gz	A _x /G	A _y /G	A _z /G	a _x ^N	a _y ^N	a_z^{N}
(a)	2.1121	71.5	11.6	2.0448	2.0526	2.2285	17.4	8.6	178.9	12.0	10.0	10.0
			11.6							12.0	10.0	10.0
			11.6							13.1	11.3	9.3
(b)	2.105	w=165 G		2.106			w=180G					
(c)	2.1117	61.8	13.9	2.097(1)	2.012(1)	2.225(1)	34.2(2)	20.0(4)	140.9(2)			
			13.9									
			13.9									

Fig. S1 ESI-MS mass spectrum of the purified ligand tren3his; m/z values of 557.97, 279.99 and 186.46 correspond to $[M + H]^+$, $[M + 2H]^{2+}$ and $[M + 3H]^{3+}$, respectively.

Fig. S2 ESI-MS mass spectrum of the purified ligand nta3his; m/z values of 603.2 and 302.0 correspond to $[M + H]^+$ and $[M + 2H]^{2+}$, respectively.

Fig. S3 pH-dependent UV-Vis spectra of Cu(II)- L^1 1:1 (**A**) and 3:2 (**B**) system (**A**: $c_L = c_{Cu(II)} = 0.0013$ M, **B**: $1.5 \times c_L = c_{Cu(II)} = 0.0019$ M, I = 0.1 M NaCl, T = 298 K).

Fig. S4 Individual molar CD spectra of mononuclear (A) and trinuclear (B) Cu(II)-L¹ complexes.

Fig. S5 Measured pH-dependent CD spectra of Cu(II)- L^2 1:1 (**A**) and 2:1 (**B**) system ($c_{L^2} = 0.0016$ M, $c_{Cu(II)} = 0.0016$ M and 0.0031 M respectively, I = 0.1 M NaCl, T = 298 K). Insert: pH-dependence of $\Delta \epsilon$ at: Δ 550, \Box 640 and \blacklozenge 780 nm (**A**), and \Box 525, \blacktriangle 560 and \blacklozenge 780 nm (**B**).

Fig. S6 Individual molar UV-Vis spectra of mononuclear (A) and dinuclear (B) $Cu(II)-L^2$ complexes, along with the difference spectra of $Cu_2H_{-1}L^2$ - $CuH_{-1}L^2$ and $Cu_2H_{-2}L^2$ - $CuH_{-1}L^2$.

Fig. S7 Individual molar CD spectra of mononuclear (A) and dinuclear (B) $Cu(II)-L^2$ complexes, along with the difference spectra of $Cu_2H_{-1}L^2$ - $CuH_{-1}L^2$.

Fig. S8 Anisotropic EPR spectra recorded at 77 K in Cu(II)- L^2 1:1 and 2:1 systems ($c_L 2 = c_{Cu(II)} = 0.0017$ M and $1.9 \times c_L 2 = c_{Cu(II)} = 0.0033$ M respectively, I = 0.1 M NaCl. Red: simulated, black: measured). Calculated EPR parameters of (a), (b) and (c) component spectra (related to the complexes CuH_xL^2 (x = 2, 1, 0, -1), $Cu_2H_xL^2$ (x = -1, -2, -3) and CuH_2L^2 , respectively) are listed in Table S1.

Fig. S9 MALDI-TOF MS spectra measured in the Cu(II)- L^2 1:1 (**A**) and 2:1 (**B**) systems. Insert: calculated spectra of the corresponding complex ($[C_{24}H_{27}N_{10}O_9Cu]^-$ and $[C_{24}H_{25}N_{10}O_9Cu_2]^-$, respectively).

Fig. S10 pH-dependent reaction rate constants ($k_{obs,corr}$, secondary axis) at Cu(II)-L¹ 3:2 (left) and Cu(II)-L² 2:1 (right) systems with the corresponding speciation diagrams (primary axis) ($c_{H_2DTBC} = 1.5 \times 10^{-3}$ M and 7.0×10⁻⁴ M, respectively, $c_{complex} = 5.0 \times 10^{-5}$ M).

Fig. S11 Dependence of reaction rate constants ($k_{obs,corr}$) on complex concentration in Cu(II)-L¹ 3:2 (left, pH 7.8) and the Cu(II)-L² 2:1 (right, pH 8.9) systems ($c_{H_2DTBC} = 5.0 \times 10^{-3}$ M and 4.0×10^{-4} M, respectively).

Fig. S12 Dependence of reaction rate constants ($k_{obs,corr}$) on oxygen concentration in Cu(II)-L¹ 3:2 (left, pH 7.8) and the Cu(II)-L² 2:1 (right, pH 8.9) systems ($c_{complex} = 4.8 \times 10^{-5}$ M and 5×10^{-5} M, $c_{H_2DTBC} = 5.0 \times 10^{-4}$ M and 8.0×10^{-4} M, respectively).

Fig. S13 UV-Vis spectra between pH 2-12 in presence of Cu(II)- L^{1} -H₂4NC 3:2:1 (c_{H₂4NC} = 2.5×10⁻⁴ M, in EtOH/H₂O 50/50).

Fig. S14 UV region of H₂DTBC-dependent UV-Vis spectra of Cu(II)- L^1 3:2 system under anaerobic conditions (c_{complex} = 2.4×10⁻⁴ M, in EtOH/H₂O 50/50, pH 7.8), in presence of 0 to 5 eq. H₂DTBC.

Fig. S15 H₂O₂ and DTBQ formation in presence of Cu(II)-L¹ 3:2 (**A**) and Cu(II)-L² 2:1 systems (**B**). \diamond and \Box : [H₂O₂] produced by the complex-catalyzed reaction (pH 7.8 and 8.5), \blacklozenge and \blacksquare : [DTBQ] produced by the complex-catalyzed reaction (pH 7.8 and 8.5). c_{complex} = 5×10⁻⁵ M, c_{H₂DTBC} = 2×10⁻³ M, *I* = 0.1 M.