Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Efficient water splitting catalyzed by flexible NiP₂ nanosheet array

electrodes under both neutral and alkaline solutions

Zonghua Pu,^a Ya Xue,^b Wenqiang Li,^a Ibrahim Saana Amiinu,^a and Shichun Mu^{a*}

^aState Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China ^bLaboratory of Southwest China Wildlife Resources Conservation, China West Normal University, Nanchong 637009, P. R. China *E-mail: msc@whut.edu.cn*

Fig. S1 SEM image of blank CC.

Fig. S2 EDX spectrum of NiP₂/CC.

Fig. S3 Optical photographs of the as-synthesized NiP_2/CC .

Fig. S4 Optical photographs of the de-ionized water and seawater.

Fig. S5 (a) OER and (b) HER polarization curves for NiP_2/CC in seawater.

Fig. S6. Polarization curves for NiP₂/CC and H₂-reduced NiP₂/CC in 1.0 M KOH at a scan rate of 2 mV s⁻¹ for OER.

Fig. S7 SEM images of NiP₂/CC after OER electrolysis.

Fig. S8 XRD pattern of NiP₂/CC post-OER.

Fig. S9 Raman spectra for NiP₂/CC before and after OER durability tests in 1.0 M KOH.

Fig. S10 (a) XPS survey spectrum for post-OER NiP_2/CC . XPS spectra for post-OER NiP_2/CC in the (b) Ni 2p, (c) P 2p, and (d) O 1s regions.

Fig. S11. (a) Polarization curves of NiP₂/CC, Ni(OH)₂/CC, Pt/C on CC and blank CC in 1.0 M KOH at a scan rate of 2 mV s⁻¹. (b) Tafel plots of NiP₂/CC and Pt/C on CC. (c) Polarization curves recorded for NiP₂/CC before and after 1000 CV cycles at a scan rate of 2 mV s⁻¹. (d) Time-dependent current density curve for NiP₂/CC under static overpotential of 160 mV for 20 h in 1.0 M KOH (without iR correction).

Fig. S12 SEM images of NiP $_2$ /CC after HER electrolysis.

Fig. S13 (a) XPS survey spectrum for post-HER NiP $_2$ /CC. XPS spectra for post-HER

NiP₂/CC in the (b) Ni 2p, (c) P 2p, and (d) O 1s regions.

Catalysts	Electrolyte/pH	j (mA cm ⁻²) @ overpotential (mV)	Ref.
NiP ₂ /CC	1.0 M PBS	4.0@570	This work
LiCoPO ₄	7.0	0.5@570	1
LiMnP ₂ O ₇	7.0	0.09@570	2
Co-Pi	6.4	0.57@570	3
$Mn_3(PO_4)_2 \cdot 3H_2O$	7.0	0.05@570	4
Ni-Bi film	9.2	1.0@540	5
NiO _x -MWCNT	9.2	0.5@330	6
Co ₃ O ₄ /SWNTS	7.0	6.0@570	7
Fe-based film	7.0	5.1@570	8
ZrS ₃ nanosheets	6.9	0.025@570	9
Co-Bi NS	7.0	5.3@570	10

 Table S1 Comparison of OER catalytic activity for well-developed electrocatalysts in neutral media.

Catalysts	Electrolyte	j (mA cm ⁻²)	$\eta \left(mV\right)$ at the	Ref.
			corresponding j	
NiP ₂ /CC	1.0 M KOH	20	310	This work
NiCo ₂ S ₄ nanowires/CC	1.0 M KOH	20	336	11
NiSe nanowire/NF	1.0 M KOH	20	270	12
Ni ₂ P nanoparticles	1.0 M KOH	10	290	13
Ni ₅ P ₄ /Ni plate	1.0 M KOH	10	290	14
Ni ₃ S ₂ nanosheet/NF	1.0 M KOH	10	260	15
urchin-like Ni ₂ P/NF	1.0 M KOH	10	200	16
Co-S/Ti mesh	1.0 M KOH	10	340	17
Co-P film	1.0 M KOH	10	345	18
Co ₃ O ₄ /rm-GO	1.0 M KOH	10	310	19
NiFeO _x film	1.0 M NaOH	10	N/A	20
Zn _x Co _{3-x} O ₄ nanowire array	1.0 M KOH	10	320	21
Ni _x Co _{3-x} O ₄ nanowire array	1.0 M KOH	10	370	22
N-doped graphene-CoO	1.0 M KOH	10	340	23
CoCo LDH	1.0 M KOH	10	393	24
CoMn LDH	1.0 M KOH	10	324	25
NiCo LDH	1.0 M KOH	10	367	26
CoO _x film	1.0 M KOH	10	403	27
Cu-N-C/graphene	0.1 M KOH	10	N/A	28

 Table S2 Comparison of selected nonprecious OER electrocatalysts in alkaline media.

Catalyst	Electrolyte	Voltage@10 mA cm ⁻²	Ref.
		(V)	
NiP ₂ /CC	1.0 M KOH	1.65	This work
NiCo ₂ S ₄ nanowires	1.0 M KOH	1.68	11
NiSe nanowire/NF	1.0 M KOH	1.63	12
Ni ₂ P nanoparticles	1.0 M KOH	1.63	13
Ni ₅ P ₄ /Ni plate	1.0 M KOH	1.7	14
urchin-like Ni ₂ P/NF	1.0 M KOH	1.49	16
Co-P film	1.0 M KOH	1.65	18
СоР	1.0 M KOH	1.587	29
CoSe	1.0 M KOH	1.65	30
NiMo alloy	1.0 M KOH	1.64	31
PNC/Co	1.0 M KOH	1.64	32
Co-P/NC	1.0 M KOH	1.7	33
CoOx@CN	1.0 M KOH	1.55@20mA cm ⁻²	34
CoP nanoneedle arrays	1.0 M KOH	~1.62	35
NiSe ₂ /Ti	1.0 M KOH	1.66	36

Table S3 Comparison of electrocatalytic performance of the NiP_2/CC with other previously reported electrocatalysts for overall water splitting in a two-electrode cell.

Movie S1 This movie shows hydrogen and oxygen evolution on NiP₂/CC electrodes in a two-electrode setup driven by a \sim 1.5 V AA battery in 1.0 M KOH.

References

- S. W. Lee, C. Carlton, M. Risch, Y. Surendranath, S. Chen, S. Furutsuki, A. Yamada, D. G. Nocera and Y. Shao-Horn, J. Am. Chem. Soc., 2012, 134, 16959-16962.
- J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang and K. T. Nam, *J. Am. Chem. Soc.*, 2014, **136**, 4201-4211.
- 3. H. S. Ahn and T. D. Tilley, Adv. Funct. Mater., 2013, 23, 227-233.
- K. Jin, J. Park, J. Lee, K. D. Yang, G. K. Pradhan, U. Sim, D. Jeong, H. L. Jang, S. Park, D. Kim, N.-E. Sung, S. H. Kim, S. Han and K. T. Nam, *J. Am. Chem. Soc.*, 2014, 136, 7435-7443.
- M. Dincă, Y. Surendranath and D. G. Nocera, Proc. Natl. Acad. Sci., 2010, 107, 10337-10341.
- X. Yu, T. Hua, X. Liu, Z. Yan, P. Xu and P. Du, ACS Appl. Mater. Interfaces, 2014, 6, 15395-15402.
- 7. J. Wu, Y. Xue, X. Yan, W. Yan, Q. Cheng and Y. Xie, Nano Res., 2012, 5, 521-530.
- M. Chen, Y. Wu, Y. Han, X. Lin, J. Sun, W. Zhang and R. Cao, ACS Appl. Mat. Interfaces, 2015, 7, 21852-21859.
- J. Xie, R. Wang, J. Bao, X. Zhang, H. Zhang, S. Li and Y. Xie, *Inorg. Chem. Front.*, 2014, 1, 751-756.
- P. Chen, K. Xu, T. Zhou, Y. Tong, J. Wu, H. Cheng, X. Lu, H. Ding, C. Wu and Y. Xie, Angew. Chem. Int. Ed., 2016, 128, 2534-2538.
- 11. D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, Nanoscale, 2015, 7, 15122-15126.

- 12. C. Tang, N. Cheng, Z. Pu, W. Xing and X. Sun, Angew. Chem. Int. Ed., 2015, 54, 9351-9355.
- 13. L. A. Stern, L. Feng, F. Song and X. Hu, Energy Environ. Sci., 2015, 8, 2347-2351.
- M. Ledendecker, S. K. Calderon, C. Papp, H. P. Steinru "ck, M. Antonietti and M. Shalom, Angew. Chem. Int. Ed., 2015, 54, 12361-12365.
- L. Feng, G. Yu, Y. Wu, G. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, J. Am. Chem. Soc., 2015, 137, 14023-14026.
- 16. B. You, N. Jiang, M. Sheng, M. W. Bhushan and Y. Sun, ACS Catal., 2016, 6, 714-721.
- T. Liu, Y. Liang, Q. Liu, X. Sun,;Y. He and A. M. Asiri, *Electrochem. Commun.*, 2015, 60, 92-96.
- 18. N. Jiang, B. You, M. Sheng, Y. Sun, Angew. Chem. Int. Ed., 2015, 54, 6251-6254.
- Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier and H. Dai, *Nat. Mater.*, 2011, 10, 780-786.
- 20. C. McCrory, S. Jung, J. Peters and T. Jaramillo, J. Am. Chem. Soc., 2013, 135 16977-16987.
- X. Liu, Z. Chang, L. Luo, T. Xu, X. Lei, J. Liu and X. Sun, *Chem. Mater.*, 2014, 6 1889-1895.
- 22. Y. Li, P. Hasin and Y. Wu, Adv. Mater., 2010, 22 1926-1929.
- 23. S. Mao, Z. Wen, T. H. Hou and J. Chen, *Energy Environ. Sci.*, 2014, 7, 609-616.
- 24. F. Song and X. Hu, Nat. Commun., 2014, 5, 4477-4483.
- 25. F. Song and X. Hu, J. Am. Chem. Soc., 2014, 136, 16481-16484.
- H. Liang, F. Meng, M. Acevedo, L. Li, A. Forticaus, L. Xiu, Z. Wang and S. Jin, *Nano Lett.*, 2015, 15, 1421-1427.
- 27. L. Trotochaud, J. K. Ranney, K. N. Williams and S. W. Boettcher, J. Am. Chem. Soc., 2012,

134, 17253-17261.

- 28. J. Wang, K. Wang, F. Wang and X. Xia, Nat. Commun., 2014, 5, 5285.
- 29. J. Chang, Y. Xiao, M. Xiao, J. Ge, C. Liu and W. Xing, ACS Catal., 2015, 5 6874-6878.
- 30. T. Liu, Q. Liu, A.M. Asiri, Y. Luo and X. Sun, Chem. Commun., 2015, 51, 16683-16686.
- J. Tian, N. Cheng, Q. Liu, X. Sun, Y. He and A. M. Asiri, J. Mater. Chem. A, 2015, 3, 20056-20059.
- 32. X. Li, Z. Niu, J. Jiang and L. Ai, J. Mater. Chem. A, 2016, 4, 3204-3209.
- 33. B. You, N. Jiang, M. Sheng, S. Gu, J. Yano and Y. Sun, Chem. Mater., 2015, 27, 7636–7642.
- H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang and Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.
- 35. P. Wang, F. Song, R. Amal, Y. H. Ng and X. Hu, ChemSusChem, 2016, 9, 472-477.
- 36. Z. Pu, Y. Luo, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2016, 8, 4718-4723.