Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supporting Information

Layer-by-layer Assembly of Porphyrin-Based Metal-Organic Frameworks on Solids Decorated with Graphene Oxide

Alexandra I. Zvyagina,^a Andrey A. Shiryaev,^a Alexander E. Baranchikov,^b Vladimir V. Chernyshev,^{a,c} Yulia Yu. Enakieva,^a Oleg A. Raitman,^a Alexander A. Ezhov,^{d,e} Ivan N. Meshkov,^a Dmitry A. Grishanov,^b Olga S. Ivanova,^b Yulia G. Gorbunova,^{a,b} Vladimir V. Arslanov,^a and Maria A. Kalinina^{a,f}*

^{a.} A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31b4 Leninsky prospect, Moscow 119071, Russia.

^{b.} N. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prospect, Moscow 119991, Russia.

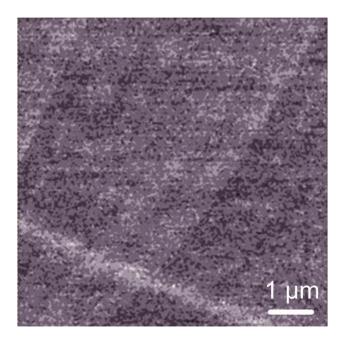
^{c.} Chemistry Department, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia.

^{d.} Faculty of Physics, M. V. Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia.

^{e.} A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 29 Leninsky prospect, Moscow 119991, Russia.

^{f.} Department of Colloid Chemistry, Institute of Fine Chemical Technologies, Moscow Technological University, 86 Vernadsky Ave., Moscow 119571, Russia.

S1 AFM study of the control GO film transferred from the air/hydrosol interface


S2 Specroscopy data

S3 X-ray data

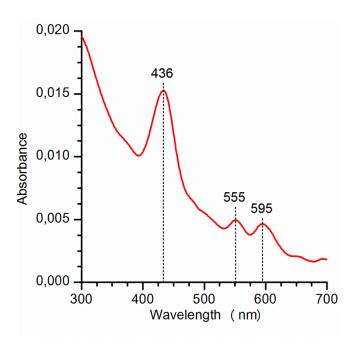
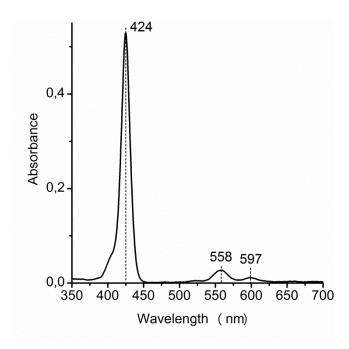
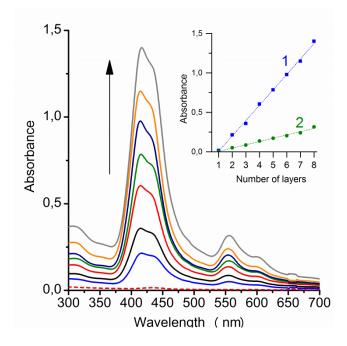
S4 Morphological studies

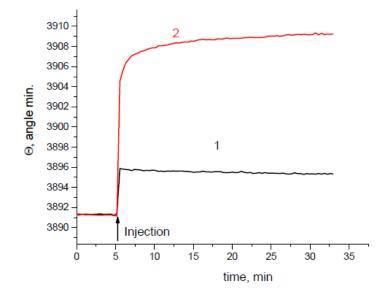
S5 References

S1 AFM study of the control GO film transferred from the air/hydrosol interface

Figure S1. AFM image of the surface of freshly cleaved mica scanned after the immersion into the GO aqueous dispersion. No GO particles on the surface of the support were found.

S2 Specroscopy data


Figure S2. UV-vis spectrum of ZnTCPP layer deposited onto the GO-modified quartz glass.

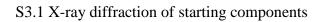

Figure S3. UV-vis spectrum of $8 \cdot 10^{-6}$ M ZnTCPP solution in chloroform measured in 2 mm quartz cuvette.

Figure S4. UV-vis spectra of SURMOF deposited onto the GO-modified quartz glass. The spectra were measured after deposition of every layer of ZnTCPP. The absorbance of SURMOF increased with a number of layers. Insert: UV–vis absorption intensity of the Soret band at 419 nm (1) and Q1-band at 557 nm (2) as a number of deposited layers.

Figure S5. Full-recorded SPR sensograms for (1) 6-cycle SURMOF and (2) control film of ZnTCPP in 0.1 M solution of zinc acetate.

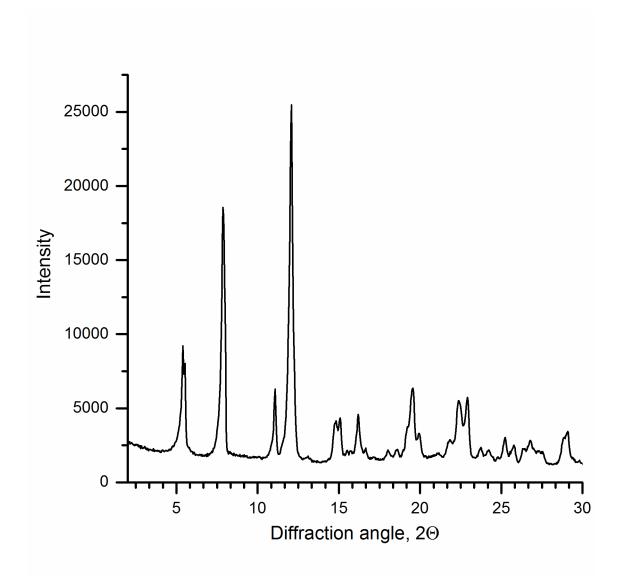


Figure S6. XRD for ZnTCPP.

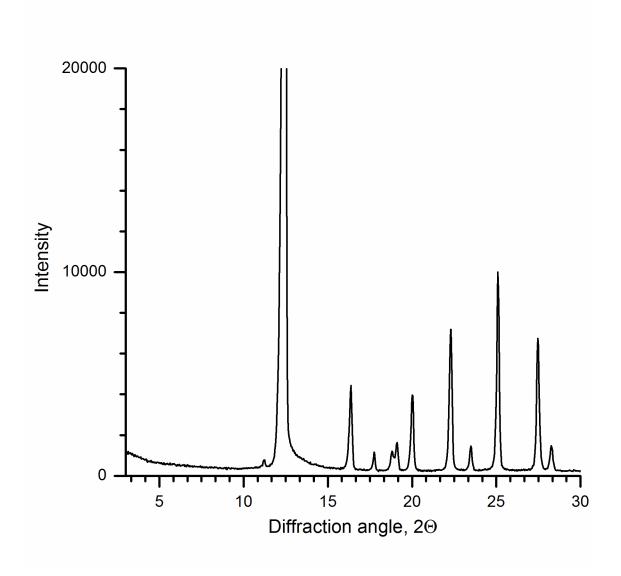
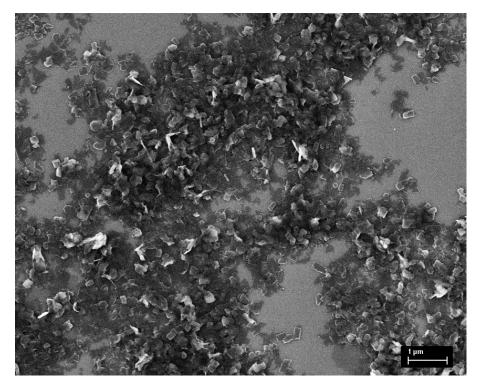
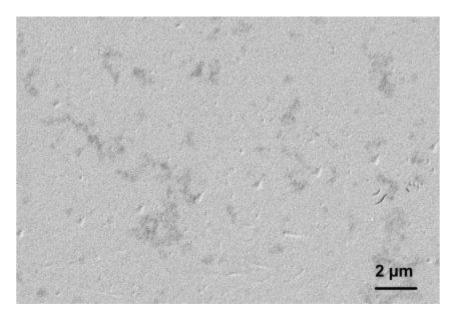



Figure S7. XRD for zinc acetate dihydrate.

S3.2 Structures of MOF comprising ZnTCPP from Cambridge Crystallographic Data Centre (CCDC)


- catena-((□8-5,10,15,20-tetrakis(4-carboxylatophenyl)porphyrinato)-triaqua-tri-zinc; unknown solvate), CCDC refcode WOPRUQ¹;
- (5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato)-bis(ethanol)-zinc, CCDC refcode JUXHUH²;
- 3. catena-((□5-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato)-tetra-aqua-pyridine-trizinc pyridine solvate dihydrate), CCDC refcode EBAQOO³;

- catena-((□9-5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato)-triaqua-tri-zinc N,Ndiethylformamide solvate), CCDC refcode VUHJEO⁴;
- catena-((□5-tetra(4-carboxyphenyl)porphyrin)-(ethylene glycol-O)-di-zinc ethylene glycol solvate), CCDC refcode WAWGOQ⁵.


S4 Morphological studies

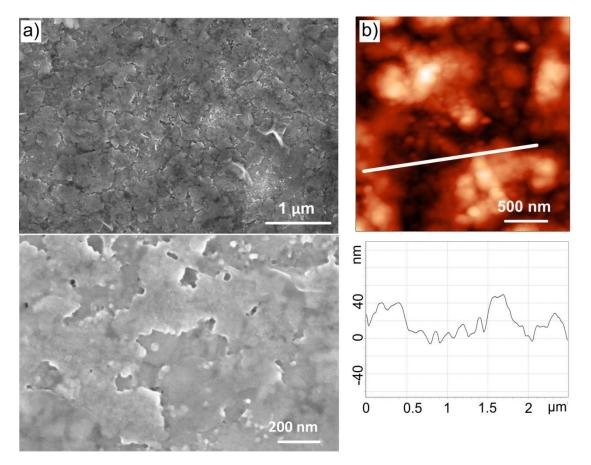

Figure S8. SEM image of $ZnTCPP/ZnAc_2$ powder immobilized on the surface of graphite tape. The material was synthesized in methanol according to the procedure described in ⁴.

Figure S9. SEM image for the ZnTCPP/ZnAc₂/GO surface coating obtained under solvothermal conditions.

Figure S10. SEM image of the control film obtained through sequential L-b-L deposition of ZnTCPP and ZnAc₂ onto the quartz glass without GO.

Figure S11. a) SEM and (b-c) ACM images and corresponding surface profiles for 20-layer ZnTCPP/ZnAc₂/GO SURMOF film.

S5 References

- 1 W. Lin, Synth. React. Inorganic, Met. Nano-Metal Chem., 2016, 46, 334–337.
- 2 M. Shmilovits, M. Vinodu and I. Goldberg, *Cryst. Growth Des.*, 2004, 4, 633–638.
- 3 E.-Y. Choi, C. a. Wray, C. Hu and W. Choe, *CrystEngComm*, 2009, **11**, 553–5.
- 4 Y. Diskin-Posner, S. Dahal and I. Goldberg, *Chem. Commun.*, 2000, 585–586.
- 5 R. Makiura, R. Usui, E. Pohl and K. Prassides, *Chem. Lett.*, 2014, **43**, 1161–1163.