Facile syntheses of N-heterocyclic carbene precursors through $\mathbf{C u}(\mathrm{II})$ - or $\mathrm{Ag}(\mathrm{I})$-catalyzed amination of N-alkynyl formamidines

Caiyun Zhang, Fan Zhang, Shichang Lv, Min Shi, and Jun Zhang*

General Information:

Unless otherwise stated, all reactions and manipulations were performed using standard Schlenk techniques. All solvents were purified by distillation using standard methods. Commercially available reagents were used without further purification. NMR spectra were recorded by using a Bruker 400 MHz spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (${ }^{1} \mathrm{H}$ NMR $\mathrm{CDCl}_{3}: 7.26$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left.\mathrm{CDCl}_{3}: 77.0 \mathrm{ppm}\right)$. Mass spectra were recorded on the HP-5989 instrument by EI/ESI methods.X-ray diffraction analysis was performed by using a Bruker Smart-1000X-ray diffractometer.

Synthesis of 1a-1d, 2a-2c:

Procedure A:
$\mathrm{NaH}(60 \%$ suspension in mineral oil, 1.5 eq.) was added into a stirred solution of formimidamide (1.0 eq.) in dried DMF at $0{ }^{\circ} \mathrm{C}$ under N_{2}. The mixture was then warmed to room temperature and stirred for 1 h . Bromoalkynes (1.1~1.2 eq.) was added drop wise to the mixture. After the addition was completed, the reaction mixture was stirred for an additional 4 h. When the reaction was completed (monitored by TLC), the reaction was quenched with water and the mixture was extracted for three times with EtOAc. The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaCl aqueous solution and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic layer was concentrated under reduced pressure to afford the desired product.

Procedure B:

A Schlenk tube was charged with formamidine (1.0 eq.), KI (2.0 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.0 eq.), evacuated, and backfilled with N_{2}. Then the solvent DMF was added under N_{2} atmosphere. Then 1-bromo-2-butyne (1.1 eq .) was added into the solution. The mixture was reflux at 100 ${ }^{\circ} \mathrm{C}$ for 8 h . When the reaction was completed (monitored by TLC), the reaction was quenched
with water and the mixture was extracted for three times with EtOAc. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum to get crude product.

12
Following the procedure $\mathbf{A}, N, N^{\prime}$-dimesitylformimidamide ($\left.1.0 \mathrm{~g}, 3.57 \mathrm{mmol}\right)$, bromopropyne ($467 \mathrm{mg}, 3.92 \mathrm{mmol}), \mathrm{NaH}(214 \mathrm{mg}, 5.36 \mathrm{mmol})$ afford the product $\mathbf{1 a}$ as pare brown oil (1.1 g, 96\%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 6.93(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{ArH}), 6.84(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.29\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, $2.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}), 2.18\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=151.5(\mathrm{NCN})$, 146.7 (ArC), 138.3 (ArC), $137.7(\mathrm{ArC}), 137.2(\mathrm{ArC}), 131.3(\mathrm{ArC}), 129.3(\mathrm{ArC}), 129.1(\mathrm{ArC})$, $128.4(\mathrm{ArC}), 79.4(\mathrm{CHC}), 71.9(\mathrm{CHC}), 36.8\left(\mathrm{NCH}_{2}\right), 20.9\left(\mathrm{ArCH}_{3}\right), 20.6\left(\mathrm{ArCH}_{3}\right), 18.5$ $\left(\mathrm{ArCH}_{3}\right), 18.2\left(\mathrm{ArCH}_{3}\right)$.

1b
Following the procedure $\mathbf{A}, N, N^{\prime}$-bis (2,6-diisopropylphenyl) formimidamide (500 mg , $1.37 \mathrm{mmol})$, bromopropyne ($194.4 \mathrm{mg}, 1.64 \mathrm{mmol}$), $\mathrm{NaH}(82.4 \mathrm{mg}, 2.05 \mathrm{mmol})$ afford the product $\mathbf{1 b}$ as pare brown solid ($581 \mathrm{mg}, 98 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.33(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.19(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar} H), 6.99(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 4.56\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.31-3.20(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{ArCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}), 1.30\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 1.14\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.1(\mathrm{NCHN}), 148.6$ $(\mathrm{ArC}), 146.7(\mathrm{ArC}), 139.8(\mathrm{ArC}), 137.7(\mathrm{ArC}), 129.0(\mathrm{ArC}), 124.1(\mathrm{ArC}), 122.8(\mathrm{ArC}), 122.6$ $(\mathrm{ArC}), 78.9(\mathrm{CHC}), 72.3(\mathrm{CHC}), 53.4\left(\mathrm{ArCH}_{2}\right), 38.6\left(\mathrm{NCH}_{2}\right), 28.5\left(\mathrm{CH}_{3}\right), 27.8\left(\mathrm{CH}_{3}\right), 24.9$ $\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{3}\right)$.

1c
Following the procedure $\mathbf{A}, N, N^{\prime}$-dicyclohexylformimidamide ($2 \mathrm{~g}, 9.60 \mathrm{mmol}$), bromopropyne ($1.86 \mathrm{mg}, 15.8 \mathrm{mmol}$), $\mathrm{NaH}(345 \mathrm{mg}, 14.4 \mathrm{mmol})$ afford the product 1 c as pare brown oil $(1.04 \mathrm{~g}, 44 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 4.04(\mathrm{~d}, J$ $\left.=2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.31-3.16(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCy} H), 2.93-2.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCy} H), 2.13-2.08(\mathrm{~m}, J=$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}), 1.93-1.02(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Cy} H) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=149.73$ $(\mathrm{NCHN}), 81.08(\mathrm{CHC}), 77.21(C H C), 69.93(\mathrm{NCyC}), 64.38(\mathrm{NCyC}), 58.10\left(\mathrm{NCH}_{2}\right), 35.55$ $(\mathrm{CyC}), 34.48(\mathrm{CyC}), 32.69(\mathrm{CyC}), 31.54(\mathrm{CyC}), 29.21(\mathrm{CyC}), 25.55(\mathrm{CyC}), 25.31(\mathrm{CyC})$, $25.13(\mathrm{CyC}), 24.86(\mathrm{CyC}), 24.57(\mathrm{CyC})$.

1d
Following the procedure $\mathbf{B}, N, N^{\prime}$-dimesitylformimidamide ($1.0 \mathrm{~g}, 3.57 \mathrm{mmol}$), KI (1.07 $\mathrm{g}, 7.13 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(985 \mathrm{mg}, 7.13 \mathrm{mmol}), 4$-bromo-1-butyne ($475 \mathrm{mg}, 3.57 \mathrm{mmol}$) in DMF refluxing 18 h afford the product $\mathbf{1 d}$ as colorless oil ($350 \mathrm{mg}, 31 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 6.91(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 6.82(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 3.91(\mathrm{t}, J=7.6$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.75-2.70\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.24\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.23(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.14\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=152.2(\mathrm{NCHN}), 146.9(\mathrm{ArC})$, 139.1 (ArC), 137.3 (ArC), 136.3 (ArC), 131.2 (ArC), $129.4(\mathrm{ArC}), 129.0(\mathrm{ArC}), 128.4(\mathrm{ArC})$ $81.9(\mathrm{CHC}), 69.4(\mathrm{CHC}), 47.6\left(\mathrm{NCH}_{2}\right), 20.8\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right), 18.6\left(\mathrm{CH}_{3}\right), 18.3\left(\mathrm{CH}_{3}\right), 17.5$ $\left(\mathrm{CH}_{3}\right)$.

2a
Following the procedure $\mathbf{A}, N, N^{\prime}$-dimesitylformimidamide ($3.00 \mathrm{~g}, 10.70 \mathrm{mmol}$), 1-bromo-2-butyne ($1.70 \mathrm{~g}, 12.84 \mathrm{mmol}), \mathrm{NaH}(642 \mathrm{mg}, 16.05 \mathrm{mmol})$ afford the product $\mathbf{2 a}$ as pare brown oil ($3.90 \mathrm{~g}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 6.90$ (s, $2 \mathrm{H}, \mathrm{Ar} H), 6.81(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 4.46\left(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.22(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.16\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.76\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=151.5$ (NCHN), 146.9 (ArC), 138.6 (ArC), 137.4 (ArC), 137.1 (ArC), 131.1 (ArC), 129.1 (ArC), $129.1(\mathrm{ArC}), 128.3(\mathrm{ArC}), 79.3(\mathrm{CHC}), 74.5(\mathrm{CHC}), 37.2\left(\mathrm{NCH}_{2}\right), 20.8\left(\mathrm{CH}_{3}\right), 20.6\left(\mathrm{CH}_{3}\right)$, $18.4\left(\mathrm{CH}_{3}\right), 18.1\left(\mathrm{CH}_{3}\right)$.

2b
Following the procedure $\mathbf{A}, N, N^{\prime}$-bis (2,6-diisopropylphenyl) formimidamide (3.00 g, 8.22 mmol), 1-bromo-2-butyne ($1.30 \mathrm{~g}, 9.86 \mathrm{mmol}$), $\mathrm{NaH}(494 \mathrm{mg}, 12.33 \mathrm{mmol})$ afford the product 2b as pare brown solid $(3.36 \mathrm{~g}, 98 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.37-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.20(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{dd}, J=8.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}$, $\left.J=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.36-3.23\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.79\left(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.32$ $\left(\mathrm{d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{ArCHCH}_{3}\right), 1.21\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{ArCHCH}_{3}\right), 1.16(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{ArCHCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.1(\mathrm{NCHN}), 148.4(\mathrm{ArC}), 146.9(\mathrm{ArC})$, 139.8 (ArC), 138.1 (ArC), 128.8 (ArC), 124.1 (ArC), 122.6 (ArC), $79.80(\mathrm{CHC}), 74.2(\mathrm{CHC})$, $39.2\left(\mathrm{NCH}_{2}\right), 28.6\left(\mathrm{CH}_{3}\right), 27.7\left(\mathrm{CH}_{3}\right), 24.9\left(\mathrm{CH}_{3}\right), 24.4\left(\mathrm{CH}_{3}\right), 23.6\left(\mathrm{CH}_{3}\right)$.

2c
Following the procedure $\mathbf{C}, N, N^{\prime}$-dicyclohexylformimidamide ($1.5 \mathrm{~g}, 7.20 \mathrm{mmol}$), KI $(2.39 \mathrm{~g}, 14.4 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.99 \mathrm{~g}, 14.4 \mathrm{mmol}), 1$-bromo-2-butyne ($1.05 \mathrm{~g}, 7.92 \mathrm{mmol}$)
afford the product 2c as pare brown oil ($1.43 \mathrm{~g}, 77 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.41$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}$), $3.95\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.27-3.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCyH}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{NCyH}), 1.83-1.77(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CyH}), 1.75\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CCH}_{3}\right), 1.72-1.69(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CyH}), 1.61-1.54(\mathrm{~m}$, $3 \mathrm{H}, \mathrm{Cy} H), 1.43-1.22(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Cy} H), 1.13-1.08(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Cy} H) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $=150.5(\mathrm{NCHN}), 64.8(\mathrm{CHC}), 58.2(\mathrm{CHC}), 35.9\left(\mathrm{NCH}_{2}\right), 33.7(\mathrm{CyC}), 31.9(\mathrm{CyC}), 25.9$ $(\mathrm{CyC}), 25.6(\mathrm{CyC}), 25.6(\mathrm{CyC}), 25.4(\mathrm{CyC})$.

Synthesis of complexes 3~9:

Procedure C: A Schlenk tube was charged with formamidine (1.0 eq.) and $\mathrm{Cu}(\mathrm{OTf})_{2}$ (1.0 eq.), evacuated, and backfilled with N_{2}. Dried DCE was successively added. The mixture was then stirred at $80^{\circ} \mathrm{C}$ for 2 h . When the reaction was completed (monitored by TLC), the reaction was quenched with water and the mixture was filtered. The filtration was extracted by DCM for three times. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum, and purified through column chromatography on silica gel to afford the product.

Procedure D: A Schlenk tube was charged with formamidine (1.0 eq.) and AgOTf (1.0 eq.), evacuated, and backfilled with N_{2}. Dried DCE was successively added. The mixture was then stirred at $80^{\circ} \mathrm{C}$ for 2 h . When the reaction was completed (monitored by TLC), the reaction was quenched with water and the mixture was filtered. The filtration was extracted by DCM for three times. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum and purified through column chromatography on silica gel to afford the product.

Procedure E: A Schlenk tube was charged with formamidine (1.0 eq.) and AgOTf (1.0 eq.), evacuated, and backfilled with N_{2}. Dried DCE was successively added. The mixture was then stirred at room temperature for 2 h . When the reaction was completed (monitored by TLC), the reaction was quenched with water and the mixture was filtered. The filtration was extracted by DCM for three times. The organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum and purified through column chromatography on silica gel to afford the product.

Procedure F: A Schlenk tube was charged with formamidine (1.0 eq.), AgOTf (0.1 eq.), HOTf (1.0 eq.), evacuated ${ }_{2}$ and backfilled with N_{2}. Dried DCE was successively added. The mixture was then stirred at room temperature for 3 h , and $80^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with water and the mixture was filtered. The filtration was extracted by DCM for three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum to afford the product in the NMR yield.

Procedure G: A Schlenk tube was charged with formamidine (1.0 eq.), $\mathrm{Cu}(\mathrm{OTf})_{2}(0.1$ eq.), HOTf (1.0 eq.), evacuated, and backfilled with N_{2}. Dried DCE was successively added. The mixture was then stirred at room temperature for 3 h , and $80^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with water and the mixture was filtered. The filtration was extracted by DCM for three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum to afford the product in the NMR yield.

Procedure H: A Schlenk tube was charged with formamidine (1.0 eq.), HOTf (1.0 eq.), evacuated, and backfilled with N_{2}. Dried DCE was successively added. The mixture was then stirred at room temperature for 3 h , and $80^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with water and the mixture was filtered. The filtration was extracted by DCM for three times. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuum to afford the product in the NMR yield.

3a

3b

Following the procedure $\mathbf{C}, \mathbf{1 a}(100 \mathrm{mg}, 0.314 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(113.6 \mathrm{mg}, 0.314$ mmol) afford the product $\mathbf{3 a}$ as pale yellow oil ($108 \mathrm{mg}, 73 \%$). Mp: 215-216 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.02(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 6.98(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 5.06(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.97\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2}\right), 4.53\left(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2}\right), 2.33(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.26(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH} 3) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=160.6$ $(\mathrm{NCHN}), 141.2(\mathrm{ArC}), 141.0(\mathrm{ArC}), 140.2(\mathrm{ArC}), 135.4(\mathrm{ArC}), 134.6(\mathrm{ArC}), 130.1(\mathrm{ArC})$,
$129.7(\mathrm{ArC}), 126.4\left(\mathrm{CCH}_{2}\right), 120.4\left(\mathrm{q}, J_{C-F}=319 \mathrm{~Hz}\right), 94.8(\mathrm{CCH}), 55.4\left(\mathrm{NCH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$, $21.0\left(\mathrm{CH}_{3}\right), 17.5\left(\mathrm{CH}_{3}\right), 17.3\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right) ;$ IR $(\mathrm{KBr}): \mathrm{v}\left(\mathrm{cm}^{-1}\right) 3017,2922,2852,1672$, 1618, 1483, 1462, 1257, 1153, 1030, 854, 637; HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2}{ }^{+}: 319.2174$, found: 319.2252.

Following the procedure $\mathbf{D}, \mathbf{1 a}(100 \mathrm{mg}, 0.314 \mathrm{mmol})$ and AgOTf $(81 \mathrm{mg}, 0.314 \mathrm{mmol})$ afford the product $\mathbf{3 a}$ in a 39% NMR yield.

Following the procedure \mathbf{F}, $\mathbf{1 a}(50 \mathrm{mg}, 0.157 \mathrm{mmol})$, $\operatorname{AgOTf}(4 \mathrm{mg}, 0.015 \mathrm{mmol})$, and HOTf ($0.023 \mathrm{ml}, 0.157 \mathrm{mmol}$) afford the product $\mathbf{3 b}$ in a 90% NMR yield. Our data are in full agreement with those reported in the literature. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.20$ (s , $1 \mathrm{H}, \mathrm{NCHN}$), 7.30 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCH}$), 7.06 (d, $J=17.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 2.36$ (d, $J=8.0 \mathrm{~Hz}, 6 \mathrm{H}$, CH_{3}), $2.15(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{CH} 3), 2.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right)$.

Following the procedure $\mathbf{G}, \mathbf{1 a}(50 \mathrm{mg}, 0.157 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{mg}, 0.015 \mathrm{mmol})$, and HOTf ($0.023 \mathrm{ml}, 0.157 \mathrm{mmol}$) afford the product $\mathbf{3 a}$ and $\mathbf{3 b}$ in a 62% and 28% NMR yield.

Following the procedure \mathbf{C}, $\mathbf{1 b}(100 \mathrm{mg}, 0.248 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(89 \mathrm{mg}, 0.248$ mmol) afford the product $\mathbf{4 a}$ as pale yellow solid ($96 \mathrm{mg}, 70 \%$). Mp: $155-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.57-7.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar} H), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{Ar} H), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 5.20(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}$) , $5.16(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{CCH}_{2}\right), 4.58\left(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CCH}_{2}\right), 2.90-2.80\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.29\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 1.28\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=160.1(\mathrm{NCHN}), 146.2(\mathrm{ArC}), 145.7(\mathrm{ArC}), 141.9(\mathrm{ArC}), 132.0(\mathrm{ArC}), 131.8(\mathrm{ArC})$, $128.9(\mathrm{ArC}), 125.8(\mathrm{ArC}), 125.1(\mathrm{ArC}), 125.0\left(\mathrm{CCH}_{2}\right), 96.3(\mathrm{CCH}), 57.8\left(\mathrm{NCH}_{2}\right), 29.4$ $(\mathrm{ArCH}), 29.3(\mathrm{ArCH}), 24.8\left(\mathrm{CH}_{3}\right), 24.5\left(\mathrm{CH}_{3}\right), 23.9\left(\mathrm{CH}_{3}\right), 23.7\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}): \mathrm{v}\left(\mathrm{cm}^{-1}\right)$ 3070, 2964, 2872, 1612, 1465, 1329, 1282, 1253, 1156, 1030, 806, 637; HRMS (ESI): m/z [M-OTf] $]^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2}{ }^{+}: 403.3113$, found: 403.3109.

Following the procedure $\mathbf{D}, \mathbf{1 b}(100 \mathrm{mg}, 0.248 \mathrm{mmol})$ and $\mathrm{AgOTf}(64 \mathrm{mg}, 0.248 \mathrm{mmol})$ afford the product $\mathbf{4 a}$ in a 33% NMR yield.

Following the procedure \mathbf{F}, 1a ($47 \mathrm{mg}, 0.116 \mathrm{mmol}$), $\operatorname{AgOTf}(3 \mathrm{mg}, 0.011 \mathrm{mmol})$, and HOTf $(18 \mathrm{mg}, 0.116 \mathrm{mmol})$ afford the product $\mathbf{4 b}$ as pale yellow solid in the yield 95%. Mp: 299-301 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.10(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHN}), 7.61-7.55(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Ar} H), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCH}), 7.35(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.30(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{ArH}), 2.42-2.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.30-2.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.29-1.22\left(\mathrm{~m}, 13 \mathrm{H}, \mathrm{CH}_{3}\right), 1.19-1.13\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $145.2(\mathrm{NCHN}), 144.9(\mathrm{NCH}), 137.4(\mathrm{ArC}), 133.9(\mathrm{ArC}), 132.3(\mathrm{ArC}), 131.9(\mathrm{ArC}), 129.8$ $(\mathrm{ArC}), 127.3(\mathrm{ArC}), 124.9(\mathrm{ArC}), 124.5(\mathrm{ArC}), 122.7(\mathrm{ArC}), 120.5\left(\mathrm{q}, J_{C-F}=319 \mathrm{~Hz}\right), 29.03$ $(\mathrm{ArCH}), 28.97(\mathrm{ArCH}), 24.70\left(\mathrm{CH}_{3}\right), 24.36\left(\mathrm{CH}_{3}\right), 23.75\left(\mathrm{CH}_{3}\right), 23.06\left(\mathrm{CH}_{3}\right), 9.37\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}): \vee\left(\mathrm{cm}^{-1}\right) 3085,2965,2872,1637,1538,1465,1329,1254,1153,1030,806,776,637$; HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd. for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{2}+: 403.3108$, found: 403.3105 .

Following the procedure $\mathbf{G}, \mathbf{1 a}(56 \mathrm{mg}, 0.138 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{mg}, 0.013 \mathrm{mmol})$, and HOTf ($21 \mathrm{mg}, 0.138 \mathrm{mmol}$) afford the product $\mathbf{4 b}$ in a 75% NMR yield

5
Following the procedure \mathbf{C}, $\mathbf{1 c}(100 \mathrm{mg}, 0.407 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(147 \mathrm{mg}, 0.407$ $\mathrm{mmol})$ afford the product 5 in a 98% NMR yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=9.06(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NCHN}), 7.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 4.43-4.29(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCyH}), 4.05-3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCyH}), 2.34(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.20-1.15(\mathrm{~m}, 22 \mathrm{H}, \mathrm{Cy} H) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=132.51(\mathrm{NCHN}), 130.52$ $\left(\mathrm{NCCH}_{3}\right), 120.5\left(\mathrm{q}, J_{C-F}=319 \mathrm{~Hz}\right), 117.01(\mathrm{NCH}), 59.74(\mathrm{NCyC}), 57.62(\mathrm{NCyC}), 43.51(\mathrm{CyC})$, $33.16(\mathrm{CyC}), 32.92(\mathrm{CyC}), 25.23(\mathrm{CyC}), 24.75(\mathrm{CyC}), 24.42(\mathrm{CyC}), 24.28(\mathrm{CyC}), 9.29$ $\left(C C H_{3}\right) ;$ IR $(\mathrm{KBr}): \vee\left(\mathrm{cm}^{-1}\right) 2935,2859,1645,1555,1454,1262,1157,1029,845,635 ;$ HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{~N}_{2}{ }^{+}: 247.2169$, found:247.2168.

Following the procedure $\mathbf{D}, \mathbf{1 c}(100 \mathrm{mg}, 0.407 \mathrm{mmol})$ and $\operatorname{AgOTf}(104 \mathrm{mg}, 0.407 \mathrm{mmol})$ afford the product 5 as pale yellow oil ($65 \mathrm{mg}, 40 \%$).

Following the procedure $\mathbf{E}, \mathbf{1 c}(100 \mathrm{mg}, 0.407 \mathrm{mmol})$ and $\operatorname{AgOTf}(104 \mathrm{mg}, 0.407 \mathrm{mmol})$ afford the product 5 as pale yellow oil ($105 \mathrm{mg}, 65 \%$).

Following the procedure $\mathbf{F}, \mathbf{1 c}(47 \mathrm{mg}, 0.194 \mathrm{mmol})$ and $\operatorname{AgOTf}(5 \mathrm{mg}, 0.019 \mathrm{mmol})$, $\operatorname{HOTf}(29 \mathrm{mg}, 0.194 \mathrm{mmol})$ afford the product 5 in a 83% NMR yield.

Following the procedure $\mathbf{G}, \mathbf{1 c}(47 \mathrm{mg}, 0.193 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(7 \mathrm{mg}, 0.019 \mathrm{mmol})$, and HOTf ($29 \mathrm{mg}, 0.193 \mathrm{mmol}$) afford the product 5 in a 85% NMR yield.

Following the procedure \mathbf{H}, 1c $(30 \mathrm{mg}, 0.121 \mathrm{mmol})$ and $\operatorname{HOTf}(18 \mathrm{mg}, 0.121 \mathrm{mmol})$ afford the product 5 in a 86% NMR yield.

6
Following the procedure $\mathbf{C}, \mathbf{1 d}(70 \mathrm{mg}, 0.210 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(77 \mathrm{mg}, 0.210 \mathrm{mmol})$ afford the product 6 as pale yellow oil $(70 \mathrm{mg}, 69 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.90(\mathrm{~s}$ $1 \mathrm{H}, \mathrm{NCHN}), 6.96(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 4.97\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}_{2}\right), 4.52(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}$), 3.99 (s, 2H, CH2), 3.23 (s, 2H, CH2), 2.27 (s, 9H, ArCH3), 2.24 (s, 3H, ArCH3), 2.19 (s, 6H, $\left.\mathrm{ArCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.6(\mathrm{NCHN}), 141.1(\mathrm{ArC}), 140.8(\mathrm{ArC}), 135.8$ $\left(\mathrm{CCH}_{2}\right), 135.0(\mathrm{ArC}), 134.9(\mathrm{ArC}), 133.6(\mathrm{ArC}), 132.7(\mathrm{ArC}), 130.2(\mathrm{ArC}), 130.1(\mathrm{ArC})$, $120.5\left(\mathrm{q}, J_{C-F}=319 \mathrm{~Hz}\right), 105.1\left(\mathrm{CCH}_{2}\right), 47.9\left(\mathrm{NCH}_{2}\right), 25.2\left(\mathrm{NCH}_{2} \mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 20.9$ $\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right) ;$ IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2920,2850,1659,1639,1480,1372,1333$, 1261, 1145, 1030, 854, 637; HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2}{ }^{+}: 333.2325$, found: 333.2325 .

Following the procedure $\mathbf{D}, \mathbf{1 d}(100 \mathrm{mg}, 0.301 \mathrm{mmol})$ and $\operatorname{AgOTf}(78 \mathrm{mg}, 0.301 \mathrm{mmol})$ afford the product 6 in a 83% NMR yield.

Following the procedure \mathbf{F}, $\mathbf{1 d}(65 \mathrm{mg}, 0.194 \mathrm{mmol})$ and $\operatorname{AgOTf}(5 \mathrm{mg}, 0.019 \mathrm{mmol})$, HOTf ($29 \mathrm{mg}, 0.194 \mathrm{mmol}$) afford the product 6 in a 44% NMR yield.

Following the procedure $\mathbf{G}, \mathbf{1 d}(46 \mathrm{mg}, 0.138 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{mg}, 0.013 \mathrm{mmol})$, HOTf ($21 \mathrm{mg}, 0.138 \mathrm{mmol}$) afford the product 6 in a 17% NMR yield.

7
Following the procedure $\mathbf{C}, \mathbf{2 a}(100 \mathrm{mg}, 0.301 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(109 \mathrm{mg}, 0.301$ mmol) afford the product 7 as pale yellow solid (113mg, 78\%). Mp: $169-171{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.88(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 6.99(\mathrm{~s}, 4 \mathrm{H}, \operatorname{Ar} H), 5.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}), 4.60(\mathrm{~s}$, $\left.2 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.40\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.29(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{ArCH}_{3}\right), 1.61\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=154.3(\mathrm{NCHN}), 141.2(\mathrm{ArC})$, $141.0(\mathrm{ArC}), 135.2(\mathrm{ArC}), 134.6(\mathrm{ArC}), 133.4(\mathrm{ArC}), 132.0(\mathrm{ArC}), 131.8(\mathrm{ArC}), 130.4(\mathrm{ArC})$, $130.0(\mathrm{ArC}), 120.6\left(\mathrm{q}, J_{C-F}=319 \mathrm{~Hz}\right), 105.2\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 49.0\left(\mathrm{NCH}_{2}\right), 21.0\left(\mathrm{ArCH}_{3}\right), 20.9$ $\left(\mathrm{ArCH}_{3}\right), 17.7\left(\mathrm{ArCH}_{3}\right), 17.3\left(\mathrm{ArCH}_{3}\right), 17.1\left(\mathrm{CCH}_{3}\right) ; \mathrm{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 3038,2923,2856$, 1706, 1635, 1442, 1339, 1259, 1148, 1029, 856, 636, 572; HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2}{ }^{+}: 333.2331$, found: 333.2339 .

Following the procedure $\mathbf{D}, \mathbf{2 a}(100 \mathrm{mg}, 0.301 \mathrm{mmol})$ and $\operatorname{AgOTf}(78 \mathrm{mg}, 0.301 \mathrm{mmol})$ afford the product 7 as pale yellow solid ($105 \mathrm{mg}, 72 \%$).

Following the procedure \mathbf{F}, $\mathbf{2 a}(52 \mathrm{mg}, 0.155 \mathrm{mmol})$, $\operatorname{AgOTf}(4 \mathrm{mg}, 0.015 \mathrm{mmol})$, and $\operatorname{HOTf}(23 \mathrm{mg}, 0.155 \mathrm{mmol})$ afford the product 7 in a 82% NMR yield

Following the procedure G, 2a $(46 \mathrm{mg}, 0.138 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{mg}, 0.013 \mathrm{mmol})$, and HOTf ($21 \mathrm{mg}, 0.138 \mathrm{mmol}$) afford the product 7 in a 15% NMR yield.

8
Following the procedure \mathbf{C}, $\mathbf{2 b}(100 \mathrm{mg}, 0.240 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OTf})_{2}(87 \mathrm{mg}, 0.240$ mmol) afford the product 8 as pale yellow solid ($85 \mathrm{mg}, 62 \%$). Mp: 238-239 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCHN}), 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar} H), 7.47(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}, \operatorname{Ar} H), 7.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 7.28(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar} H), 5.80(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{CCH}), 4.72\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.20-3.07\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArCH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.41(\mathrm{~d}, J=$ $\left.6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.37\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.27\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.25(\mathrm{~d}, J=$ 7.2 Hz, $\left.6 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=152.6(\mathrm{NCHN}), 146.1(\mathrm{ArC}), 144.7(\mathrm{ArC})$, $133.7(\mathrm{ArC}), 132.0(\mathrm{ArC}), 131.8(\mathrm{ArC}), 131.1(\mathrm{ArC}), 125.8(\mathrm{ArC}), 125.3(\mathrm{ArC}), 120.7(\mathrm{q}$,
$\left.J_{C-F}=319 \mathrm{~Hz}\right), 106.3\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 51.7\left(\mathrm{NCH}_{2}\right), 28.9(\mathrm{ArCH}), 28.8(\mathrm{ArCH}), 25.3\left(\mathrm{CH}_{3}\right), 25.0$ $\left(\mathrm{CH}_{3}\right), 24.8\left(\mathrm{CH}_{3}\right), 23.3\left(\mathrm{CH}_{3}\right), 17.7\left(\mathrm{CH}_{3}\right)$; IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 3068,2965,2873,1708,1632$, $1465,1392,1325,1258,1150,1032,806,757,637$; HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd. for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{2}{ }^{+}: 417.3270$, found: 417.3272.

Following the procedure $\mathbf{D}, \mathbf{2 b}(50 \mathrm{mg}, 0.120 \mathrm{mmol})$ and $\operatorname{AgOTf}(31 \mathrm{mg}, 0.120 \mathrm{mmol})$ afford the product $\mathbf{8}$ in a 91% NMR yield.

Following the procedure $\mathbf{F}, \mathbf{2 b}(49 \mathrm{mg}, 0.116 \mathrm{mmol}), \operatorname{AgOTf}(3 \mathrm{mg}, 0.011 \mathrm{mmol})$, and HOTf ($18 \mathrm{mg}, 0.116 \mathrm{mmol}$) afford the product $\mathbf{8}$ in a 82% NMR yield.

Following the procedure $\mathbf{G}, \mathbf{2 b}(57 \mathrm{mg}, 0.138 \mathrm{mmol}), \mathrm{Cu}(\mathrm{OTf})_{2}(5 \mathrm{mg}, 0.013 \mathrm{mmol})$, and HOTf ($21 \mathrm{mg}, 0.138 \mathrm{mmol}$) afford the product $\mathbf{8}$ in a 73% NMR yield.

9a

9b

Following the procedure $\mathbf{D}, \mathbf{2 c}(100 \mathrm{mg}, 0.384 \mathrm{mmol})$ and $\operatorname{AgOTf}(139 \mathrm{mg}, 0.384 \mathrm{mmol})$ afford the product 9a as pale yellow oil ($55 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.80$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}), 5.06-5.00(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCy} H), 4.52\left(\mathrm{t}, J=3.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.97-3.95(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CCH}), 3.83-3.77(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCyH}), 2.13-2.09(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CyH}), 2.00-1.95\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3}\right), 1.89-1.75$ $(\mathrm{m}, 5 \mathrm{H}, \mathrm{Cy} H), 1.72-1.63(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cy} H), 1.45-1.40(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cy} H), 1.34-1.25(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Cy} H) ;$ ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=150.2(\mathrm{NCHN}), 132.2\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 120.5\left(\mathrm{q}, J_{C-F}=319 \mathrm{~Hz}\right)$, $103.2\left(\mathrm{NCCH}_{3}\right), 64.5(\mathrm{NCyC}), 58.6(\mathrm{NCyC}), 40.8\left(\mathrm{NCH}_{2}\right), 32.2(\mathrm{CyC}), 29.2(\mathrm{CyC}), 25.4$ $(\mathrm{CyC}), 24.5(\mathrm{CyC}), 24.3(\mathrm{CyC}), 23.9(\mathrm{CyC}), 17.2\left(\mathrm{CCH}_{3}\right)$; IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2834,2858$, 1709, 1641, 1452, 1352, 1256, 1154, 1030, 894, 638; HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2}^{+}: 261.2325$, found: 261.2325 .

Following the procedure E, 2c ($100 \mathrm{mg}, 0.384 \mathrm{mmol})$ and $\operatorname{AgOTf}(99 \mathrm{mg}, 0.384 \mathrm{mmol})$ afford the product 9b as pale yellow oil ($83 \mathrm{mg}, 53 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.12$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NCHN}), 4.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CCH}), 4.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.80(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCyH})$, $3.42(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCy} H), 1.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.80-1.71(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Cy} H), 1.66-1.64(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{Cy} H), 1.52-1.35(\mathrm{~m}, 6 \mathrm{H}, \mathrm{Cy} H), 1.24-1.15(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Cy} H) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $=155.5(\mathrm{NCHN}), 132.1\left(\mathrm{NCCH}_{2}\right), 120.5\left(\mathrm{q}, J_{C-F}=318 \mathrm{~Hz}\right), 103.5(\mathrm{CCH}), 58.4(\mathrm{NCyC}), 57.5$
$(\mathrm{NCyC}), 51.7\left(\mathrm{NCH}_{2}\right), 33.6(\mathrm{CyC}), 32.4(\mathrm{CyC}), 30.7(\mathrm{CyC}), 25.2(\mathrm{CyC}), 24.5(\mathrm{CyC}), 24.4$ $(\mathrm{CyC}), 24.3(\mathrm{CyC}), 10.9\left(\mathrm{CCH}_{3}\right)$; IR $(\mathrm{KBr}): \mathrm{v}\left(\mathrm{cm}^{-1}\right) 2936,2859,1709,1643,1454,1355$, 1311, 1258, 1157, 1032, 870, 636; HRMS (ESI): m/z [M-OTf] ${ }^{+}$calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{~N}_{2}{ }^{+}: 261.2325$, found: 261.2324 .

10
A Schlenk tube was charged with $3(50 \mathrm{mg}, 0.106 \mathrm{mmol}),{ }^{t} \mathrm{BuOK}(15.7 \mathrm{mg}, 0.14 \mathrm{mmol})$, $\mathrm{S}_{8}(7 \mathrm{mg}, 0.212 \mathrm{mmol})$, evacuated and backfilled with N_{2}. Dried THF was successively added. The mixture was then stirred at room temperature for 2 h . When the reaction was completed (monitored by TLC), the solvent was evacuated in vacuo, and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=10: 1)$ to give the product $\mathbf{1 0}$ as pale yellow powder ($19 \mathrm{mg}, 49 \%$). Mp: 252-253 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}, \mathrm{CDCl} 3) \delta=7.00(\mathrm{~d}, J=12.1 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{Ar} H), 6.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 2.33\left(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 2.12\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{CH} H_{3}\right)$, $1.91\left(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=162.5(\mathrm{SC}), 139.1(\mathrm{ArC})$, $138.9(\mathrm{ArC}), 135.8(\mathrm{ArC}), 135.6(\mathrm{ArC}), 133.6(\mathrm{ArC}), 131.6(\mathrm{ArC}), 129.3(\mathrm{ArC}), 129.1(\mathrm{ArC})$, $126.2(\mathrm{NCH}), 114.1\left(\mathrm{NCCH}_{3}\right), 29.6\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 21.1\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$, $10.4\left(\mathrm{CH}_{3}\right)$; IR (KBr): $\mathrm{v}\left(\mathrm{cm}^{-1}\right) 2917,2853,1674,1486,1397,1357,1199,1035,1009$, 860,758, 637; HRMS (ESI): m/z $[\mathrm{M}+\mathrm{Na}]^{+}$calcd. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaS}^{+}: 373.1709$, found: 373.1707.

11
KHMDS (1.0 M in hexane, $0.124 \mathrm{~mL}, 0.124 \mathrm{mmol})$ was added drop wise to a solution of $7 \mathbf{a}(50 \mathrm{mg}, 0.103 \mathrm{mmol})$ and $\mathrm{S}_{8}(5 \mathrm{mg}, 0.206 \mathrm{mmol})$ in THF $(2 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 30 minutes, the mixture was warmed to room temperature, and stirred for 2 h . The solvent was
evacuated in vacuum, and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=10: 1)$ to give the product $\mathbf{1 1}$ as pale yellow powder ($33 \mathrm{mg}, 79 \%$). Mp : 202-203 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.92(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 6.89(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArH}), 4.93-4.92(\mathrm{~m}, 1 \mathrm{H}$, CCH), 4.17 (dd, $J=3.2 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), $2.32\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{ArCH}_{3}\right)$, 2.27 (s, 3H, ArCH3), $2.26\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{ArCH}_{3}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$ $176.7(\mathrm{NCHN}), 140.7(\mathrm{ArC}), 137.3(\mathrm{ArC}), 137.2(\mathrm{ArC}), 136.9(\mathrm{ArC}), 136.1(\mathrm{ArC}), 134.1$ $(\mathrm{ArC}), \quad 134.0(\mathrm{ArC}), 129.6(\mathrm{ArC}), 128.8(\mathrm{ArC}), 97.3\left(\mathrm{NCH}_{2} \mathrm{CH}\right), 48.3\left(\mathrm{NCH}_{2}\right), 21.1\left(\mathrm{CH}_{3}\right)$, $21.0\left(\mathrm{CH}_{3}\right), 20.2\left(\mathrm{CH}_{3}\right), 17.8\left(\mathrm{CH}_{3}\right), 17.2\left(\mathrm{CH}_{3}\right)$; IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 2915,2853,1702,1490$, 1449, 1355, 1314, 1278, 1225, 1046, 849, 732; HRMS(ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{~S}^{+}: 365.2051$, found: $\mathbf{3 6 5 . 2 0 4 7}$.

12
KHMDS (1.0 M in hexane, $0.39 \mathrm{~mL}, 0.39 \mathrm{mmol}$) was added drop wise to a solution of $\mathbf{3}$ ($50 \mathrm{mg}, 0.106 \mathrm{mmol}$) and $[\mathrm{Rh}(\mathrm{cod}) \mathrm{Cl}]_{2}(27.1 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF $(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. After 30 minutes, the mixture was warmed to room temperature and stirred for 2 h . The solvent was evacuated in vacuo, and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=25: 1)$ to give the product as an orange product ($28 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta=7.07(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar} H), 7.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 6.99(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} H), 6.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NCH}), 4.45$ (d, $J=11.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H \mathrm{C} H), 3.31(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} H \mathrm{C} H), 2.42(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~m}, 4 \mathrm{H})$, $2.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=183.0(\mathrm{~d}, \mathrm{~J}=51.9 \mathrm{~Hz}, \mathrm{NCRh}), 165.5(\mathrm{ArC}), 163.9(\mathrm{ArC})$, $138.4(\mathrm{ArC}), 138.0(\mathrm{ArC}), 137.5(\mathrm{ArC}), 136.4(\mathrm{ArC}), 134.5(\mathrm{ArC}), 134.0(\mathrm{ArC}), 131.0(\mathrm{ArC})$, $129.6(\mathrm{CHCH}), 128.4(\mathrm{CHCH}), 125.6(\mathrm{ArC}), 120.4\left(\mathrm{NCCH}_{3}\right), 95.8(\mathrm{NCH}), 67.5,54.3,33.0$, 32.4, 28.4, 21.2, 21.1, 18.8, 17.6, 9.7; IR (KBr): v (cm^{-1}) 2921, 2852, 1678, 1608, 1482, 1377, 1282, 1154, 1031, 851, 657; HRMS (EI): m/z [M] ${ }^{+}$calcd. for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{ClRh}^{+}: 564.1773$, found: 564.1777.

13
KHMDS (1.0 M in hexane, $0.39 \mathrm{~mL}, 0.39 \mathrm{mmol}$) was added drop wise to a solution of 9b $(140 \mathrm{mg}, 0.34 \mathrm{mmol})$ and $[\mathrm{Rh}(\operatorname{cod}) \mathrm{Cl}]_{2}(92 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF $(5 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. After 30 minutes, the mixture was warmed to room temperature and stirred for 2 h . The solvent was evacuated in vacuo, and the residue was purified by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=25: 1)$ to give the product 13 as an orange product $(30 \mathrm{mg}, 17 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=6.41-6.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCy} H), 6.30-6.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NCyH}), 4.91(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CHCH}), 4.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CCH}), 3.53-3.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.37(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CHCH}), 2.40-2.31(\mathrm{~m}$, $5 \mathrm{H}), 2.21-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH} 3), 1.88-1.82(\mathrm{~m}, 5 \mathrm{H}), 1.79-1.73$ $(\mathrm{m}, 3 \mathrm{H}), 1.67-1.55(\mathrm{~m}, 7 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 1 \mathrm{H}), 1.16-1.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=211.3(\mathrm{~d}, J=46.1 \mathrm{~Hz}, \mathrm{NCRh}), 134.9(\mathrm{CHCH}), 102.6\left(\mathrm{NCCH}_{3}\right), 96.1\left(\mathrm{NCH}_{2} C\right)$, $68.3(\mathrm{NCyC}), 67.3(\mathrm{NCyC}), 65.1\left(\mathrm{NCH}_{2}\right), 39.46,34.07,33.16,32.38,31.89,30.84,30.65$, 29.67, 29.33, 29.29, 29.18, 29.00, 28.59, 27.61, 27.18, 26.85, 26.13, 25.94, 22.66, 21.58, 14.08; IR (KBr): v (cm ${ }^{-1}$) 2923, 2851, 1694, 1658, 1497, 1449, 1358, 1261, 1089, 1022, 800, 641; HRMS(ESI): $\mathrm{m} / \mathrm{z}\left[\mathrm{M}-\mathrm{Cl}+\mathrm{CH}_{3} \mathrm{CN}\right]^{+}$calcd. for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{~N}_{3}{ }^{+}: 512.2507$, found: 512.2500.

Reference:

1. S. Urban, M. Tursky, R. Fröhlich and F. Glorius, Dalton Trans., 2009, 6934.

NMR spectra：

compound 1a

路沉蓇
方
$\stackrel{\stackrel{6}{8}}{+}$
สัสㅜㅜ
ヘָּ

compound 1b

compound 1c
萑
$\mathrm{Cy}^{-}{ }^{\mathrm{N}} \mathrm{N}_{\mathrm{Cy}}$

compound 1d

compound 2a

珱毞

$$
\mathrm{Mes}^{-}=\mathrm{N}_{\mathrm{Mes}}
$$

$\stackrel{\text { 等 }}{i}$

$$
\mathrm{Mes}^{-} \mathrm{N}_{-\mathrm{Mes}}
$$

compound 2b

compound 2c

$\frac{8}{\tilde{p}}$

compound 3a

compound 3b

compound 4a

compound 4b

compound 5


```
compound 6
```



```
#*)
#.0.0.0
```


compound 7
M

compound 8

compound 9a

compound 9b

$\stackrel{\text { ® }}{\stackrel{\infty}{\omega}}$

ㅇ․

compound 10

compound 11

compound 12

compound 13

X-Ray Crystallography: Each crystal was mounted on a glass fiber. Crystallographic measurements were made on a Bruker Smart Apex 100 CCD area detector using graphite monochromated Mo-Karadiation ($\lambda \mathrm{Mo}-\mathrm{K} \alpha=0.71073 \AA$). The structures were solved by directed methods (SHELXS-97) and refined on F2 by full-matrix least squares (SHELX-97) using all unique data. All the calculations were carried out with the SHELXTL18 program.

Key details of the crystal and structure refinement data are summarized in Table S1-S2. Further crystallographic details may be found in the respective CIF files, which were deposited at the Cambridge Crystallographic Data Centre, Cambridge, UK [CCDC 1507982 (7) and 1507983 (3a)].

Table S1

	3 a	7
Identification code	a40411ba	mo_40408b
Formula	$\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{C}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	$\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	637.61	482.55
T, K	293(2)	213(2)
crystal system	Orthorhombic	Monoclinic
space group	Pbca	P 21/c
a, \AA A	20.338(7)	15.879(3)
b, \AA	16.179(5)	9.6304(17)
c, \AA	21.087(7)	17.698(3)
α, deg	90	90
β, deg	90	111.401(3)
$\gamma, \operatorname{deg}$	90	90
Volume, Å 3	6938(4)	2519.7(8)
Z	8	4
Dcalc, Mg / m3	1.221	1.272
absorption coefficient, mm-1	0.294	0.177
$\mathrm{F}(000)$	2688	1016
crystal size, mm	$0.600 \times 0.150 \times 0.100$	$0.450 \times 0.200 \times 0.050$
2θ range, deg	1.876 to 25.006	2.350 to 25.007
reflections	25983/6084	14464/4411
collected /unique	[$\mathrm{R}(\mathrm{int}$) $=0.0964]$	$[\mathrm{R}(\mathrm{int})=0.00 .0367]$
data / restraints/ parameters	6084 / 0 / 382	4411 / 34 / 329
goodness of fit on F2	0.911	1.034
final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})] \mathrm{a}$	$\mathrm{R} 1=0.0730, \mathrm{wR} 2=0.1881$	$\mathrm{R} 1=0.0510, \mathrm{wR} 2=0.1553$
R indices (all data)	$\mathrm{R} 1=0.1718, \mathrm{wR} 2=0.2294$	$\mathrm{R} 1=0.0795, \mathrm{wR} 2=0.1776$
lgst diff peak and hole, e/A3	0.508 and -0.339	0.281 and -0.266

