Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Supplementary content

A unique cysteine selective water soluble fluorescent probe operable in multiple sensing cycles for detection of biogenic cysteine in multicellular living species

Sanju Das,^{a,b} Yeasmin Sarkar,^a Rini Majumder,^a Santanu Mukherjee,^c Jaya Bandyopadhyay,^c Ambarish Ray^{*b} and Partha Pratim Parui^{*a}

^aDepartment of Chemistry, Jadavpur University, Kolkata 700032, India. Fax: +91-33-24146223, Phone:+91-9433490492, E-mail: parthaparui@yahoo.com A
^bDepartment of Chemistry, Maulana Azad College, Kolkata 700013, India. Fax: +91-33-22268111, Phone:+91-9836650180, E-mail: r_ambarish@yahoo.co.in
^cDepartment of Biotechnology, West Bengal University of Technology, Kolkata 700064, India

Contents

1. Crystal data and structure refinement parameters of 1	•••	p S2
2. Selected bond lengths (Å) and angles ($^\circ$) for 1	•••	p S3
3. Theoretical calculation of 1	•••	p S4
4. ¹ H and ¹³ C NMR of L ₁	•••	p S5
5. Fluorescence studies to monitor <i>in-situ</i> complexation	•••	p S6
6. Job's plot for determining complex stoichiometry	•••	p S7
7. ESI-MS ⁺ analysis	•••	p S8
8. DFT optimized structure of 1	•••	p S9
9. Fluorescence studies of L_1 with various cations	•••	p S10
10. Fluorescence studies of 1 with various anions	•••	p S11
11. Fluorescence studies of 1 with Hcy and GSH	•••	p S12
12. pH dependent Cys induced fluorescence response	•••	p S13
13. Fluorescence studies of 1 at low Cys concentration	•••	p S14
14. Time dependent fluorescence studies of 1 with different biothiols	•••	p S15
15. Cyclic Voltametric studies for 1	•••	p S16
16. pH dependent fluorescence spectra	•••	p S17
17. Time dependent fluorescence studies at low Cys concentration	•••	p S18
18. Toxicity in the form of survival assays of 1		p S19
19. Bio imaging studies for L_1 in different time interval	•••	p S20

Table S1: Crystal data and structure refinement parameters of 1

Formula	C32H32Cl2Cu3N4O12
CCDC	1474805
M_r	926.17
T/K	296(2)
λ /Å	0.71073
Crystal system	Monoclinic
Space group	P (21)/n
a, b, c /Å	12.979(4), 8.793(2),
	16.272(5)
α, β, γ / °	90.00, 111.84, 90.00
V/\AA^3	1723.7(9)
D_c / gcm^{-3}	1.785
Ζ	2
M_u / mm^{-1}	2.060
F(000)	938
heta min, max / °	1.7, 25.025
Data set, <i>hkl</i>	15, 10, 19
Total, Unique data, <i>R</i> _{int}	19960, 3048, 0.024
Completeness to 2θ (%)	99.9
Goodness-of-fit on F ²	1.149
$N_{ m ref}, N_{ m par}$	3048, 241
R, wR_2, S	0.0365, 0.1208, 1.15

Cu(1) - O(8)	1.952(2)
Cu(1) - N(2)	1.962(3)
Cu(1) - O(1)	1.964(2)
Cu(1) - N(1)	2.001(3)
Cu(2) - O(1)	1.903(2)
Cu(2) - O(8)	1.904(2)
O(1) - C(12)	1.429(4)
N(1) - C(13)	1.340(5)
N(1) - C(1)	1.357(5)
N(2) - C(4)	1.280(5)
N(2) - C(3)	1.470(5)
O(8) - C(11)	1.335(4)
O(8) - Cu(1) - N(2)	90.93(12)
O(8) - Cu(1) - O(1)	79.22(10)
N(2) - Cu(1) - O(1)	169.94(12)
O(8) - Cu(1) - N(1)	161.40(12)
N(2) - Cu(1) - N(1)	95.32(13)
O(1) - Cu(1) - N(1)	94.69(12)
N(2) - Cu(1) - Cu(2)	129.49(10)
O(1) - Cu(2) - O(8)	98.06(10)
Cu(2) - O(1) - Cu(1)	97.52(10)
O(8) - Cu(2) - Cu(1)	138.34(7)

Table S2: Selected bond lengths (Å) and angles ($^\circ$) for 1

Table S3: Electronic excitation wavelength (λ) , oscillator strengths (f_{cal}) and extinction coefficient (ϵ) for **1** obtained by the TD-DFT/B3LYP/6-31+G(d,p) calculation on ground state geometries with CPCM solvation model in water. The experimentally obtained UV-Vis absorption (Obs) parameters for **1** are depicted for comparison.

Complex(1)	λ(nm)	fcal	$\epsilon \times 10^{-4} (M^{-1} cm^{-1})$
Cal	365.33	0.019	0.20
Obs	373.00	-	0.23

Fig. S1. (A) ¹H-NMR and (B) ¹³C-NMR spectra of L_1 in CDCl₃.

Fig. S2. Fluorescence spectra of L_1 (5µM) in presence of gradual increase of Cu(ClO₄)₂ (0–20 µM) in 20 mM HEPES-NaOH, pH 7.4 (excitation wavelength: 440 nm). The decrease in intensity with increase of Cu²⁺ ion concentrations is shown by arrow.

Fig. S3. Job's plot for determining the stoichiometry of the complex between L_1 and Cu^{2+} . The difference between the observed and L_1 absorbance at 370 nm were plotted with mole fraction of Cu^{2+} in the mixture of L_1 and $Cu(ClO_4)_2$ with various compositions (ϵ_L and C_L are the extinction coefficient and concentration of L_1 , respectively).

Fig. S4. ESI-MS⁺ of (A) L_1 (*m/z*: found 271.3076; calcd. 271.3412) for $[L_1+H]^+$), (B) **1** (*m/z*: found 826.0719; calcd. 826.7112 for $[C_{32}H_{32}Cu_3N_4O_4+ClO_4]^+$), (C) **1**+Cys (*m/z* for $[C_{32}H_{32}Cu_3N_4O_4+ClO_4]^+$: found 826.0719; calcd. 826.7112, *m/z* for $[L_1+H]^+$: found 271.3076; calcd. 271.34, *m/z* for $[Cystine+H]^+$): found 241.0150; calcd. 241.3412) and (D) **1**+Cys after 60 min incubation (*m/z* for $[C_{32}H_{32}Cu_3N_4O_4+ClO_4]^+$: found 826.0719 and 826.7112, *m/z* for $[Cystine+H]^+$): found 241.0150; calcd. 241.3412) in water.

Fig. S5. DFT optimized structure of **1**. All H's-atoms are excluded for clarity. Color code: gray, C; blue, N; red, O; brown, Cu.

Fig. S6. Fluorescence spectra of L_1 (5 μ M) in various competing metal ions (Mn²⁺,Co²⁺, Ni²⁺, Zn²⁺, Hg²⁺, Fe^{2+/3+} etc, 20 μ M each) in 20 mM HEPES-NaOH, pH 7.4 (excitation wavelength: 440 nm). The spectrum in presence of Cu²⁺ (20 μ M) is depicted by red.

Fig. S7. Fluorescence spectra of **1** (5 μ M with respect to L₁) in presence of various anions (CN⁻, N₃⁻, S²⁻, OAc⁻, H₂PO₄⁻ and HPO₄²⁻etc.: 100 equiv. each) in 20 mM HEPES, pH 7.4 (excitation wavelength: 440 nm). The spectrum in presence of Cys (60 equiv.) and S²⁻ ion (300 equiv.) are depicted by blue and dark cyan, respectively. All spectra recorded after 30 s with different anion/molecule.

Fig. S8. The fluorescence spectra for **1** (5 μ M with respect to L₁) in presence of different biothiols (60 equiv.) (Cys, blue; GSH, red; green, Hcy) in 20 mM HEPES-NaOH, pH 7.4 (excitation wavelength: 440 nm). All spectra recorded after 30 s with biothiol.

Fig. S9. The extent of 500-nm fluorescence intensity enhancement (F_X/F_0) for **1** in presence of Cys (60 equiv. each) at 30 s in 20 mM HEPES-NaOH, at various pH of the medium (7.0–8.5) are depicted by bar-diagram.

Fig. S10. Fluorescence spectra of **1** (5 μ M with respect to L₁) in presence of low Cys concentration (0.5–5.0 equiv.) in 20 mM HEPES-NaOH, pH 7.4 (excitation wavelength: 440 nm). The spectrum in presence of 60 equiv. of Cys is depicted by blue for comparison. All spectra recorded after 30 s with Cys.

Fig. S11. Different biothiols (Cys, blue; GSH, red; green, Hcy) (60 equiv.) induced time dependent fluorescence intensity at 500-nm for (solid curve) **1** (5 μ M with respect to L₁) and (broken curve) **1**+Cys (60 equiv.) at intensity quenched condition in 20 mM HEPES-NaOH, pH 7.4 (excitation wavelength: 440 nm). The black curve (upper x-axis) represents time dependent fluorescence intensity for **1** at higher GSH concentration (200 equiv.).

Fig. S12. Cyclic Voltammograms of 1 (130 μ M) in 10 mM HEPES-NaOH, pH 7.4 at 100 mV.s⁻¹ scan rate.

Fig. S13. pH dependent fluorescence spectra of **1** (5 μ M with respect to L₁) in presence of Cys (60 equiv.) in 20 mM HEPES, pH 7.4 (excitation wavelength: 440 nm): pink, pH 6.0 and blue, pH 7.4. Spectra recorded after 30 s with Cys.

Fig. S14. The time dependent fluorescence intensity at 500-nm for **1** (5 μ M with respect to L₁) in presence of low Cys concentration (red, 1.0; blue, 3.0 and pink, 5.0 equiv.) in 20 mM HEPES-NaOH, pH 7.4 (excitation wavelength: 440 nm). The time dependent intensity profile in presence of 60 equiv. Cys is depicted by dark cyan for comparison.

Fig. S15. Assessment of toxicity of the **1** in presence and absence of various analytes after different interval of times by survival assays in *C. elegans* are depicted by bar-diagram.

Fig. S16. Fluorescence images of the *C. elegans* exposed to L_1 (20 μ M) for different interval of time: (A) 15 min, (B) 45 min and (D) 120 min. The scale bars: 40 μ m.