Supporting Information

A New ESIPT-Based Fluorescent Probe for Highly Selective and Sensitive Detection of Hydrogen Sulfide and Its Application in Live-Cell Imaging

Bo Chen,^a Jing Huang,^a Huiqing Geng,^a Lingli Xuan,^a Tengfei Xu,^a Xin Li,^b and Yifeng Han*^a

^aDepartment of Chemistry, The Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China. ^bZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. E-mail: zstuchem@gmail.com

Contents

Photophysical properties of PHS1	S3
Additional spectroscopic data	S4
The characterization data of PHS1	518
References······S	321

Photophysical properties of PHS1

Table S1 Photophysical properties of the probe.

entry	λem (nm)	Φ^{a}	$\epsilon \: / \: M^{1} \: cm^{1}$
PHS1	483	0.009	3277
PHS1+H ₂ S	483	0.104 ^b	4014

(a) The quantum yield (Φ) of **PHS1** and **PHS1**-H₂S system were determined according to the literature.¹ (b) Φ was determined in the present of 2.0 equiv. of H₂S.

$$\Phi_{Sample} = \frac{\Phi_{QS} \cdot A_{QS} \cdot F_{Sample} \cdot \lambda_{exQS} \cdot \eta_{Sample}^2}{A_{Sample} \cdot F_{QS} \cdot \lambda_{exSample} \cdot \eta_{QS}^2}$$

Where Φ is quantum yield; A is absorbance at the excitation wavelength; F is integrated area under the corrected emission spectra; λ_{ex} is the excitation wavelength; η is the refractive index of the solution; the Sample and QS refer to the sample and the standard, respectively. We chose fluorescein in 0.1 M NaOH as standard, which has the quantum yield of 0.95.²

Additional spectroscopic data

Scheme S1 ESIPT process of 3-aminophthalimide (3).

Fig. S1 The UV-vis absorption (unsmoothed curves) of **PHS1** (10.0 μ M) and compound **3** (10.0 μ M) in PBS buffer solution (10 mM, pH 7.4, containing 50% EtOH). (Data were collected after incubation of **PHS1** with H₂S for 1 h).

Fig. S2 Fluorescence intensity of **PHS1** (10.0 μ M) at 486 nm as a function of H₂S concentration (0-80.0 μ M) in PBS buffer (10.0 mM, pH 7.4, containing 50% EtOH). Inset: fluorescence intensity of **PHS1** (10.0 μ M) at 486 nm as a function of H₂S concentration (0-2.0 μ M) in PBS buffer (10.0 mM, pH 7.4, containing 50% EtOH). (Data were collected after incubation of **PHS1** with H₂S for 1 h).

The detection limit (DL) of H₂S using PHS1 was determined from the following equation: ³

$$DL = 3*\sigma/K$$

Where σ is the standard deviation of the blank solution; K is the slope of the calibration curve.

Scheme S2 The proposed mechanism of $PHS1-H_2S$ interactions.

Fig. S3 The comparison of fluorescence spectra of the probe-H₂S mixture solution (**PHS1**-Na₂S mixture solution) and control (compound **3**) in PBS buffer solution (10 mM, pH 7.4, containing 50% EtOH) ($\lambda_{ex} = 393$ nm).

Fig. S4 Comparison of the TLC analysis of PHS1, PHS1-Na₂S system, and compound 3 (control).

The pictures of the thin layer chromatography TLC plates under different light used to compare probe **PHS1**, the reference sample of compound **3** and the reaction mixture of probe **PHS1** with Na₂S in 1:1 PBS-EtOH (v/v). (A) Under light of 254 nm, and (B) under light of 365 nm. Spots on the TLC plate are: (a) compound **3**, (b) the reaction mixture of probe **PHS1** and Na₂S, (c) probe **PHS1**. The eluent for TLC: hexane:EtOAc = 3:1 (v/v). This indicates that the reaction of probe **PHS1** with Na₂S produced compound **3**.

Fig. S5 Kinetics of PHS1 (10.0 μ M) in the presence of 2.0 equiv. of H₂S in PBS buffer solution (10 mM, pH 7.4, containing 50% EtOH) ($\lambda_{ex} = 393$ nm).

Fig. S6 Fluorescence responses of **PHS1** (10.0 μ M) to various reactive sulfur species and coexisting ions (H₂S at 20.0 μ M, GSH at 1.0 mM, and Cys, HSO₃⁻, S₂O₄²⁻, S₂O₃²⁻, SO₃²⁻, ClO⁻, I⁻, Fe³⁺, F⁻, Cl⁻, Br⁻, H₂PO₄⁻, NO₃⁻ and CO₃²⁻ at 100.0 μ M, respectively) in PBS buffer solution (10 mM, pH 7.4, containing 50% EtOH) (λ ex = 393 nm). (Data were collected after incubation of **PHS1** with each analytes for 1 h).

Fig. S7 Fluorescence responses of **PHS1** (10.0 μ M) to H₂S (20.0 μ M) in the presence of various reactive sulfur species and coexisting ions (GSH at 1.0 mM, and Cys, HSO₃⁻, S₂O₄²⁻, S₂O₃²⁻, SO₃²⁻, ClO⁻, I⁻, Fe³⁺, F⁻, Cl⁻, Br⁻, H₂PO₄⁻, NO₃⁻ and CO₃²⁻ at 100.0 μ M, respectively) in PBS buffer solution (10 mM, pH 7.4, containing 50% EtOH) (λ ex = 393 nm). (Data were collected after incubation of **PHS1** with each analytes for 1 h).

Fig. S8 Effect of the pH on the fluorescence emission of PHS1 (10.0 μ M) in buffer solution (λ ex = 393 nm). (Data were collected after incubation of PHS1 with H₂S for 1 h).

Fig. S9 Effect of the pH on the fluorescence emission of PHS1-H₂S system (10.0 μ M of PHS1 and 2.0 equiv. of H₂S) in buffer solution (λ ex = 393 nm). (Data were collected after incubation of PHS1 with H₂S for 1 h).

Fig. S10 Effect of the pH on the fluorescence emission of **PHS1** (10.0 μ M) and **PHS1-**H₂S system (10.0 μ M of **PHS1** and 2.0 equiv. of H₂S) in buffer solution (λ ex = 393 nm). (Data were collected after incubation of **PHS1** with H₂S for 1 h).

Fig. S11 Effect of different contents of EtOH in PBS solution on the fluorescence emission of PHS1 (10.0 μ M) in the presence of 2.0 equiv. of H₂S. (λ ex = 393 nm). (Data were collected after incubation of PHS1 with H₂S for 1 h).

Fig. S12 Cell viability of HeLa cells treated with different concentration of PHS1 for different time periods. No cytotoxic effect was observed for the cells incubated with PHS1 at 10 μ M even for 24 h.

The characterization data of PHS1

¹H NMR of **1**

¹H NMR of $\mathbf{2}$

3.446 3.444 3.446 3.4426 3.4426 3.444 1.1228 1.1228 1.1457 1.1457 1.1457 1.1457 1.1457 1.1457 1.1458 1.1209 1.1209 1.1208

¹H NMR of **3**

¹³C NMR of **3**

References

- 1 R. A. Velapoldi, and H. H. Tønnesen, J. Fluoresc., 2004, 14, 465-472.
- 2 (a) D. F. Eaton, Pure Appl. Chem., 1988, 60, 1107-1114; (b) D. Magde, R. Wong, and P. G.
 Seybold, Photochem. Photobiol., 2002, 75, 327-334.
- 3 (a) J. T. Yeh, P. Venkatesan and S. P. Wu, New J. Chem., 2014, 38, 6198-6204. (b) A. Roy, D.
 Kand, T. Saha and P. Talukdar, Chem. Commun., 2014, 50, 5510-5513.