Supporting Information

A copillar[5]arene-based fluorescent "on-off-on" sensor is applied in sequential recognition of iron cation and fluoride anion

Jin-Fa Chen, Xiao-Bin Cheng, Hui Li, Qi Lin*, Hong Yao, You-Ming Zhang, Tai-Bao

Wei*

Key Laboratory of Eco–Environment–Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China

Scheme S1 Synthesis of copillar[5]arene DBP5.

Fig. S4 High resolution mass data of a copillar[5]arene DBP5.

Fig. S5 The 2D NOESY spectrum of (600 MHz, CDCl3, 298 K) of **DBP5** at 50.0 mM.

Fig. S6 Absorbance spectra of DBP5, DBP5+Fe³⁺, DBP5+Ca²⁺, DBP5+Mg²⁺ and Fe³⁺ in H₂O/DMSO (1 : 9, v/v).

Fig. S7 Fluorescence spectral response of **DBP5** (2×10^{-4} M) in H₂O/DMSO (1 : 9 , v/v) solution upon addition of 2 equiv. of Fe³⁺ ($\lambda_{ex} = 295$ nm). Inset: photograph of **DBP5** (2×10^{-4} M) upon addition of 2 equiv. of Fe³⁺, which was taken under a UV–lamp (365 nm).

Determination of the detection limit

We use the 3δ way to figure out the detection limit. The process of the analysis as follows.

Fig. S8 The photograph of the linear range.

Linear Equation: Y=-1241.99484X+910.80227 R²=0.9979 S=1241.99×10⁶ $\delta = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}} = 6.82(n = 30)$ K=3 LOD =K× δ /S= 1.65 ×10⁻⁸M

Analytical techniques	The detection limits	Ref.
Spectrophotometry	1.8×10 ⁻⁶ mol/L (0.1 mg/L)	[S1]
Atomic absorption spectroscopy	10 ⁻⁷ mol/L	[S2]
Voltammetry	7.7×10 ⁻⁹ mol/L	[S3]
Electrophoresis	8.9×10 ⁻⁶ mol/L (0.5 mg/L)	[S4]

Table S1 The detection limits of various analytical techniques about Fe³⁺.

Fig. S9 The Job's plot examined between Fe³⁺ and **DBP5**, indicating the 1 : 1 stoichiometry, which was carried out by fluorescence spectra ($\lambda_{ex} = 295$ nm).

Fig. S10 The photograph of the linear range.

Linear Equation: Y=171.33703X+18.66397 R²=0.99557

Fig. S11 Time-dependent of **DBP5**–Fe³⁺ (2×10^{-4} M) upon addition of F⁻ (1×10^{-3} M) in H₂O/DMSO (1 : 9, v/v) with a plot of the fluorescence intensity that is estimated as the peak height at 330 nm.

Fig. S12 Fluorescence spectral response of **1** (2×10^{-4} M) in H₂O/DMSO (1 : 9, v/v) upon addition of 2 equiv. of Fe³⁺ ($\lambda_{ex} = 295$ nm).

Fig. S13 Fluorescence spectral response of **1** (2×10^{-4} M) and **DBP5** (2×10^{-4} M) in H₂O/DMSO (1 : 9, v/v), $\lambda_{ex} = 295$ nm.

Fig. S14 High resolution mass data of complex 2DBP5·Fe³⁺.

Fig. S15 Partial ¹H NMR spectra (600 MHz, 298 K) of (a) 5.0 mM DBP5; (b) 5.0 mM DBP5 and 10 mM Fe³⁺; (c) 5.0 mM DBP5, 10 mM Fe³⁺ and 25 mM F^- .

Table S2 X-ray crystal data of DBP5

chemical formula	$C_{51}H_{60}Br_2O_{10}$	
Chemical formula weight	992.81	
Crystal system	triclinic	
Space group	P-1	
Cell length a	11.8851(10)	
Cell length b	12.1025(10)	
Cell length c	21.0450(13)	
Volume	2566.6(3)	
Z	2	
Temperature	294.44(10) K	
Crystal color	clear dark yellow	
Crystal F 000	1032	
Crystal density	1.285	
Special details	Solvent masking has been carried out	
Radiation wavelength	0.71073 Å	
Measurement device	four-circle diffractometer	
Measurement device type	SuperNova, Dual, Cu at zero, Eos	
Measurement method	\w scans	
Computing cell refinement	CrysAlisPro, Agilent Technologies,	
	Version 1.171.37.35 (release 13-08-	
	2014 CrysAlis171 .NET)	
	(compiled Aug 13 2014,18:06:01)	

CrysAlisPro, Agilent Technologies,
Version 1.171.37.35 (release 13-08-
2014 CrysAlis171 .NET)
(compiled Aug 13 2014,18:06:01)
ShelXL (Sheldrick, 2015)

References:

- [S1] L. V. Mulaudzi, J. F. van Staden and R. I. Stefan, *Anal. Chim. Acta*, 2002, **467**, 35.
- [S2] A. Ohashi, H. Ito, C. Kanai, H. Imura and K. Ohashi, *Talanta*, 2005, 65, 525.
- [S3] A. Bobrowski, K. Nowak and J. Zarebski, Anal. Bioanal. Chem., 2005, 382, 1691.
- [S4] C. Ortega, S. Cerutti, R. A. Olsina, L. D. Martínez and M. F. Silav, J. *Pharm. Biomed. Anal.*, 2004, **36**, 721.

^{*} Corresponding author. Tel: +86 931 7970394.

E-mail address: weitaibao@126.com.