Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016

Hollow metal-organic nanoparticles as redox species for label-free

voltammetric immunoassay of prostate specific antigen

Weixiang Li, Qinfeng Rong, and Zhanfang Ma^{*} Department of Chemistry, Capital Normal University, Beijing, 100048, China.

Figure S1. TEM image of the solid cadmium organic nanoparticles.

Figure S2. The effect of pH on square wave voltammetry (SWV) current responses of this biosensor towards 10 ng mL⁻¹ PSA.

Figure S3. Current response of the biosensor to 10 ng mL⁻¹ PSA, mixture (10 ng/mL PSA + 100 ng mL⁻¹ alpha fetoprotein (AFP) + 100 ng mL⁻¹ carcino-embryonic antigen (CEA) + 100 ng mL⁻¹ Human immunoglobulin G (IgG) + 100 ng mL⁻¹ ascorbic acid (AA) + 100 ng mL⁻¹ Glucose), 100 ng mL⁻¹ CEA, 100 ng mL⁻¹ AFP, 100 ng mL⁻¹ IgG, 100 ng mL⁻¹ AA, and 100 ng mL⁻¹ glucose.

Sample	This work (ng mL ⁻¹)	ELISA (ng mL ⁻¹)	Relative error (%)
1	1.24±0.025	1.30	-4.3
2	1.57±0.041	1.53	2.9
3	1.01 ± 0.032	1.05	-3.7
4	2.30±0.016	2.13	7.2
5	1.30±0.053	1.22	6.2
6	0.97±0.017	0.95	-1.6
7	0.83±0.041	0.85	2.3
8	1.06±0.034	1.07	0.7
9	0.75±0.058	0.78	3.9
10	1.13±0.022	1.08	4.1

Table S1. Determination of PSA in human serum samples (n= 3).

 Table S2. A comparison of the performance of the present and referenced immunosensors for the detection of PSA.

Substrate materials	Method	Linear range (ng/mL)	Detection limit (pg/mL)	Sensitivity (µA/(lgC)) (C: ng ml ⁻¹)	Ref.
Au-NH ₂ /rGO	Cyclic voltammetry	0.0005-15	0.17	11.83	1
3,4-Diaminobenzoic acid	Linear-sweep voltammogram	0.2-16	100	5.42	2
Graphene/gold	Cyclic voltammetry	0-10	0.59	4.8	3
Gold nanorods	Chronocoulometry	0.004-60	1.5	11.67	4
Nafion-Graphene/CdOPs	Square wave voltammetry	0.01-100	0. 97	9.37	This work

References:

1 L. Tian, L. Liu, Y. Li, Q. Wei and W. Cao, New J. Chem., 2015, **39**, 5522-5528.

2 S. Zhang, P. Du and F. Li, Talanta, 2007, 72, 1487-1493.

3 H. D. Jang, S. K. Kim, H. Chang and J.-W. Choi, Biosens. Bioelectron., 2015, 63, 546.

4 G. Sun, H. Liu, Y. Zhang, J. Yu, M. Yan, X. Song and W. He, New J. Chem., 2015, **39**, 6062-6067.