Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Trinuclear (Aminonitrone)Zn^{II} Complexes as Key Intermediates in Zinc(II)-

mediated Generation of 1,2,4-Oxadiazoles from Amidoximes and Nitriles

Dmitrii S. Bolotin, Mikhail V. Il'in, Alexander S. Novikov, Nadezhda A. Bokach,

Vitalii V. Suslonov, and Vadim Yu. Kukushkin

Table of Contents

Analytical and Spectroscopy Data	2
X-ray Structure Determinations, the structures of the O-iminoacylated oximes	5
Spectra of 2a–d	5
Spectra of [3a–d](OTf) ₄	17
Spectra of [4a–c (OTf) ₂]	29
Spectra of [5a–d](OTf)	
Crystal data for 2a–c and [3a](OTf) ₄	50
Crystal data for [4b (OTf)(EtOH)](OTf), [4c (OTf) ₂], [5a](OTf), and [5d](OTf)	51
Theoretical study of bonding situation in solid state structures of 2 and $[4(OTf)_2]$	
Calculated Wiberg bond indices for selected bonds in 2a – c	56
Cartesian atomic coordinates of model structures	57
References	64

Analytical and Spectroscopy Data

Complexes 2a-d, [3a-d](OTf)₄, [4a-c(OTf)₂], and salts [5a-d](OTf) gave satisfactory C, H, and N elemental analyses for the proposed formulas, and these species were also characterized by high-resolution ESI-MS, IR, ¹H NMR, and CP-MAS TOSS ¹³C{¹H} NMR (for poorly soluble 2ad, $[3a-d](OTf)_4$, and [5d](OTf)) or ${}^{13}C{}^{1}H$ NMR spectroscopy (for $[4a-c(OTf)_2]$ and [5a-c](OTf)exhibiting sufficient solubility) and additionally by single-crystal X-ray diffraction for eight species (2a-c, [3a](OTf)₄, [4b(OTf)(EtOH)](OTf), [4c(OTf)₂], [5a-d](OTf), and [5d](OTf)). The positive mode HRESI mass spectra of 2a-d exhibit sets of peaks corresponding to the quasi-ions $[Zn(1)_2 H^{+}$, $[Zn_2(1)_2 - H^{+}]^+$, $[Zn_2(OAc)(1)_2]^+$, $[Zn_2(OAc)_2(1)_3 - H^{+}]^+$, $[Zn_2(OAc)_3(1)_4 - 2H^{+}]^+$, and in the negative mode spectra, sets of peaks from $[Zn(OAc)_3]^-$, $[Zn_2(OAc)_5]^-$ were identified. The HRESI⁺-MS of $[3a-d](OTf)_4$ display several groups of peaks corresponding to the fragmentation ions $[Zn(OAc)]^+, [Zn_2(1)_2 - H]^+, [Zn_2(OAc)_2(1) - H]^+, [Zn_2(OAc)(1)_2 - 2H]^+, [Zn_2(OAc)_2(1)_2 - H]^+, [Zn_2(Ac)_2(1)_2 - H]^$ $[Zn_2(OAc)_3(1)_2]^+$, and in the negative mode spectra, sets of peaks from $[Zn(OTf)_3(1)]^-$ and $[Zn_2(OTf)_4(1) - H]^-$. The HRESI⁺-MS of complexes $[4a-c(OTf)_2]$ exhibit sets of peaks the quasi-ions $[Zn{RC(NH_2)=NOC(N(CH_3)_2)=NH}(OTf)]^+$ corresponding to and $[Zn \{RC(NH_2)=NOC(N(CH_3)_2)=NH\}_2(OTf)]^+$, whereas in the negative mode the only observed peaks are due to $[RC(NH_2)=NOC(N(CH_3)_2)=NH_2 + 2OTf]^-$. The positive and negative mode ESI spectra of amidinium salts [5a-d](OTf) display group of peaks from $[M]^+$, $[2M + OTf]^+$, and $[M + 2OTf]^{-}$, respectively.

The IR spectra of $2\mathbf{a}$ -d, $[3\mathbf{a}$ -d](OTf)₄, $[4\mathbf{a}$ -c(OTf)₂], and $[5\mathbf{a}$ -d](OTf) display two to four bands from medium to very strong intensities at 3498–3126 cm⁻¹, which can be attributed to the N–H stretches. Weak to medium bands at 3088–2772 cm⁻¹ observed in the spectra were assigned to v(C–H). The IR spectra of $2\mathbf{a}$ -d, $[3\mathbf{a}$ -d](OTf)₄, and $[4\mathbf{a}$ -c(OTf)₂] exhibit one v(C=N) band in the range 1678–1638 cm⁻¹, which is specific to amidoximes,¹ whereas the spectra of $[5\mathbf{a}$ -d](OTf) exhibit two C=N absorption bands in the range 1694–1650 cm⁻¹, which are characteristic for *O*carbamidinium amidoximes. The spectra of $2\mathbf{a}$ -d and $[3\mathbf{a}$ -d](OTf)₄ also feature three strong to very strong bands in the region 1608–1340 cm⁻¹ from v(C=O) of the ligated acetate group. In addition, the spectra of $[3a-d](OTf)_4$, $[4a-c(OTf)_2]$, and [5a-d](OTf) display a two to three very strong bands in the region 1290–1160 cm⁻¹, characteristic to the v(S=O) of the triflate anion.

The ¹H NMR spectra of **2a–d** and [**3a–d**](OTf)₄ recorded in (CD₃)₂SO are equal to the spectra of corresponding **1a–d**, which indicates solvolysis of the complexes and therefore their spectra were recorded in (CD₃)₂CO, where the dissociation was not observed. Characteristic feature of the spectra is the absence of the N*H* signal due to a fast exchange with water protons. Another feature is the availability of broad singlets attributed to the N*H*₂ resonances at 6.40–5.29 ppm (for **2a–d**) and 8.48–7.93 (for [**3a–d**](OTf)₄). Low-field shift of the signal in the spectra of [**3a–d**](OTf)₄ is probably due to the positive charge on the HNCNH₂ moiety provided by the stabilization of **1a–d** ligand in the aminonitrone form. The ¹H NMR spectra of [**4a–c**(OTf)₂] and [**5a–d**](OTf) were recorded in (CD₃)₂SO and no solvolysis was observed for [**4a–c**(OTf)₂] likely due to bidentate character of the ligands that imparts the substitutional intertness. Characteristic feature of the spectra of [**4a–c**(OTf)₂] is availability of two or three broad signals at 7.98–7.57 and 7.12–4.78 ppm corresponding to the peaks of the N*H* and N*H*₂ moieties, respectively. The spectra of [**5a–d**](OTf) exhibit two sets of one or two broad singlets at 8.74–7.92 and 7.34–6.63 ppm attributed to the carbamidinium and amidoxime N*H*₂ resonances, correspondingly.

The ¹³C{¹H} NMR spectra of $[4a-c(OTf)_2]$ and [5a-d](OTf) were recorded in $(CD_3)_2$ SO. The spectra exhibit two signals at 161.89–155.68 ppm, which are characteristic for the R–*C*(=N)– NH₂, and O–*C*(=N)–N(CH₃)₂ resonances and the quartet at 122.77–119.54 ppm of the C atom of the triflate anion. In high-field region, the spectra of $[4a-c(OTf)_2]$ display one signal at 37.61– 37.32 ppm, whereas in the spectra of [5a-d](OTf) two signals at 38.35–37.09 ppm, which are characteristic of the N(*C*H₃)₂ resonances, were observed.

The solid state CP-MAS TOSS ¹³C{¹H} NMR spectra of **2a–d**, [**3a–d**](OTf)₄, and [**5d**](OTf) were measured due to poor solubility of these species in $(CD_3)_2CO$. The spectra of **2a–d** and [**3a–d**](OTf)₄ display one to two signals in the region 182.47–175.69 ppm, which can be

attributed to CH_3-CO_2 and one to three signals of the CH_3-CO_2 resonances were observed at 27.27– 20.12 ppm. In addition, the spectra of **2a–d** and [**3a–d**](OTf)₄ exhibit one signal at 164.47– 152.40 ppm corresponding to the C atom of the carbamidoxime group.

X-ray Structure Determinations, the structures of the O-iminoacylated oximes

In the molecular structures of [**5a**](OTf) and [**5d**](OTf), the N(2)–C(1) [1.342(3) and 1.334(3) Å] and the N(4)–C(3/4) [1.463(3)–1.467(3) Å] are normal single bonds (**Figure 6**).² The N(1)–C(1), N(4)–C(2), and N(3)–C(2) bond lengths [1.285(6)–1.323(3) Å] indicate intermediate order between typical single and double bonds,² which reflects the amide character of these bonds. The O(1)–N(1) distances [1.471(2) and 1.483(2) Å] are longer than usual O–N^{sp2} bonds, which is specific for *O*-imidoylamidoximes.³ In the carbamidoxime groups of both complexes, the HO- and H₂N-moieties are in the *sin*-configuration. An intramolecular hydrogen bond exists between one of the amidinium H atoms and the oxime N atom (N_{amidinium}•••N_{oxime} 2.207 and 2.519 Å; N_{amidinium}–H•••N_{oxime} 104.30 and 105.78, respectively). In both crystal structures, hydrogen bonds between the amide H atoms and the triflate O atoms were observed.

Figure 1S. The structure of [**5a**]⁺ showing the atomic numbering scheme. Thermal ellipsoids are given at the 50% probability level.

Spectra of 2a-d

2a

Figure 4S. IR spectrum of 2a.

Figure 6S. 13C{1H} CP-MAS TOSS NMR spectrum of 2a.

Acquisition Paramete	r				
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	0.4 Bar
Focus	Not active			Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	3500 V	Set Dry Gas	4.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source

2b

Figure 11S. 13C{1H} CP-MAS TOSS NMR spectrum of 2b.

Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source
Scan Begin	50 m/z	Set Capillary	3500 V	Set Dry Gas	4.0 l/min
Focus	Not active			Set Dry Heater	180 °C
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	0.4 Bar
Acquisition Param	leter				

c

Figure 16S. 13C{1H} CP-MAS TOSS NMR spectrum of 2c.

Acquisition Parame	eter				
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	0.4 Bar
Focus	Not active			Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	3500 V	Set Dry Gas	4.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source

2d

Figure 21S. 13C{1H} CP-MAS TOSS NMR spectrum of 2d.

Spectra of [3a-d](OTf)₄

[**3a**](OTf)₄

Figure 24S. IR spectrum of [3a](OTf)₄.

ure 26S. 13C{1H} CP-MAS TOSS NMR spectrum of $[3a](OTf)_4$.

[**3b**](OTf)₄

Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source
Scan Begin	50 m/z	Set Capillary	3500 V	Set Dry Gas	4.0 l/min
Focus	Not active			Set Dry Heater	180 °C
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	0.4 Bar
Acquisition Param	leter				

Figure 29S. IR spectrum of [3b](OTf)₄.

Figure 31S. 13C{1H} CP-MAS TOSS NMR spectrum of [3b](OTf)₄.

[**3c**](OTf)₄

Figure 34S. IR spectrum of [3c](OTf)₄.

Figure 36S. 13C{1H} CP-MAS TOSS NMR spectrum of [3c](OTf)₄.

[**3d**](OTf)₄

Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source
Scan Begin	50 m/z	Set Capillary	3500 V	Set Dry Gas	4.0 l/min
Focus	Not active			Set Dry Heater	180 °C
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	0.4 Bar
Acquisition Param	leter				

Figure 39S. IR spectrum of [3d](OTf)₄.

Figure 41S. 13C{1H} CP-MAS TOSS NMR spectrum of [3d](OTf)₄.

Spectra of [4a-c(OTf)₂]

[**4a**(OTf)₂]

Figure 44S. IR spectrum of [4a(OTf)₂].

-0

Figure 46S. ¹³C NMR spectrum of [4a(OTf)₂].

[**4b**(OTf)₂]

Acquisition Param	eter				
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	1.0 Bar
Focus	Not active		-	Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	3500 V	Set Dry Gas	6.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source

Figure 49S. IR spectrum of [4b(OTf)₂].

[**4c**(OTf)₂]

Figure 54S. IR spectrum of [4c(OTf)₂].

Figure 56S. ¹³C NMR spectrum of [4c(OTf)₂].

Spectra of [5a-d](OTf)

[**5a**](OTf)

Figure 598. IR spectrum of [5a](OTf).

Figure 61S. ¹³C NMR spectrum of [5a](OTf).

[**5b**](OTf)

Figure 64S. IR spectrum of [5b](OTf).

Figure 66S. ¹³C NMR spectrum of [5b](OTf).

[**5c**](OTf)

Acquisition Param	eter				
Source Type	ESI	Ion Polarity	Negative	Set Nebulizer	1.0 Bar
Focus	Not active			Set Dry Heater	180 °C
Scan Begin	50 m/z	Set Capillary	3500 V	Set Dry Gas	6.0 l/min
Scan End	3000 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source

Figure 698. IR spectrum of [5c](OTf).

[**5d**](OTf)

Figure 74S. IR spectrum of [5d](OTf).

igure 75S. ¹H NMR spectrum of [5d](OTf).

F

Figure 76S. 13C{1H} CP-MAS TOSS NMR spectrum of [5d](OTf).

Identification code	2a	2b	2c	[3a](OTf) ₄
Empirical formula	$C_{18}H_{22}N_4O_6Zn$	$C_{18}H_{20}Cl_2N_4O_6Zn$	$C_{10}H_{22}N_4O_6Zn$	$C_{36}H_{50}F_{12}N_8O_{26}S_4Zn_3$
Formula weight	455.76	524.65	359.68	1563.19
Temperature/K	100(2)	100(2)	100(2)	100(2)
Crystal system	monoclinic	monoclinic	monoclinic	triclinic
Space group	$P2_1/c$	C2/c	$P2_1/c$	P-1
a/Å	11.955(2)	32.7550(17)	14.998(5)	9.9101(6)
b/Å	17.5685(11)	10.5714(5)	8.7997(4)	17.0394(9)
c/Å	15.782(3)	13.5063(6)	23.691(8)	18.2463(6)
α/°	90	90	90	74.733(4)
β/°	139.46(4)	110.305(4)	148.87(8)	89.846(4)
γ/°	90	90	90	82.485(5)
Volume/Å ³	2154.3(14)	4386.2(4)	1616(2)	2945.2(3)
Z	4	8	4	2
$\rho_{calc}g/cm^3$	1.405	1.589	1.478	1.763
µ/mm ⁻¹	1.180	1.406	1.550	3.890
F(000)	944.0	2144.0	752.0	1584.0
Crystal size/mm ³	0.15 imes 0.1 imes 0.1	0.3 imes 0.25 imes 0.25	0.25 imes 0.25 imes 0.2	0.1 imes 0.1 imes 0.1
Radiation	MoK α ($\lambda = 0.71073$)	MoKα (λ = 0.71073)	MoKa ($\lambda = 0.71073$)	$CuK\alpha (\lambda = 1.54184)$
2@ range for data collection/°	5.222 to 55	5.47 to 54.996	5.494 to 54.978	6.342 to 144.998
	$-15 \le h \le 15$,	$-31 \le h \le 42,$	$-18 \le h \le 19,$	$-11 \le h \le 12$,
Index ranges	$-22 \le k \le 22,$	$-13 \le k \le 13,$	$-11 \le k \le 11,$	$-21 \le k \le 21,$
	$-20 \le l \le 20$	$-17 \le l \le 17$	$-30 \le l \le 30$	$-18 \le 1 \le 22$
Reflections collected	37536	18244	13150	32356
Independent reflections	4962 [$R_{int} = 0.0467$,	$5042 [R_{int} = 0.0343,$	$3720 [R_{int} = 0.0224,$	11567 [$R_{int} = 0.0918$,
Independent reflections	$R_{sigma} = 0.0257$]	$R_{sigma} = 0.0341]$	$R_{sigma} = 0.0190$]	$R_{sigma} = 0.0936$]
Data/restraints/parameters	4962/0/266	5042/0/284	3720/0/196	11567/0/813
Goodness-of-fit on F ²	1.059	1.080	1.053	1.020
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0299, wR_2 = 0.0706$	$R_1 = 0.0402, wR_2 = 0.1001$	$R_1 = 0.0226, wR_2 = 0.0600$	$R_1 = 0.0793, wR_2 = 0.2065$
Final R indexes [all data]	$R_1 = 0.0380, wR_2 = 0.0748$	$R_1 = 0.0471, wR_2 = 0.1039$	$R_1 = 0.0266, wR_2 = 0.0629$	$R_1 = 0.1152, wR_2 = 0.2496$
Largest diff. peak/hole / e Å-3	0.42/-0.34	1.53/-0.73	0.32/-0.37	1.66/-1.03
CCDC number	1504005	1504000	1503999	1504006

Table 1S. Crystal data for 2a–c and [3a](OTf)₄.

Identification code	[4b(OTf)(EtOH)](OTf)	[4c (OTf) ₂]	[5a](OTf)	[5d](OTf)
Empirical formula	$C_{24}H_{32}Cl_2F_6N_8O_9S_2Zn$	$C_{14}H_{28}F_6N_8O_8S_2Zn$	$C_{11}H_{15}F_3N_4O_4S$	$C_9H_{19}F_3N_4O_4S$
Formula weight	890.96	679.93	356.33	336.34
Temperature/K	100(2)	100(2)	100(2)	100(2)
Crystal system	triclinic	orthorhombic	monoclinic	monoclinic
Space group	P-1	Pna2 ₁	C2/c	P2 ₁ /c
a/Å	8.7052(5)	16.8415(3)	16.7859(5)	11.8893(13)
b/Å	12.9506(6)	20.4363(4)	8.3599(2)	18.4419(14)
c/Å	17.0474(7)	16.1946(3)	21.9907(5)	7.2746(7)
α/°	108.023(4)	90	90	90
β/°	90.814(4)	90	90.745(2)	103.177(11)
γ/°	95.484(4)	90	90	90
Volume/Å ³	1817.27(16)	5573.83(17)	3085.67(15)	1553.0(3)
Ζ	2	8	8	4
$\rho_{calc}g/cm^3$	1.628	1.621	1.534	1.438
µ/mm ⁻¹	1.027	1.124	2.429	0.260
F(000)	908.0	2784.0	1472.0	704.0
Crystal size/mm ³	0.15 imes 0.1 imes 0.1	0.2 imes 0.2 imes 0.2	0.1 imes 0.1 imes 0.1	0.2 imes 0.2 imes 0.2
Radiation	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	$CuK\alpha \ (\lambda = 1.54184)$	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.232 to 55	5.298 to 55	8.042 to 153.006	5.648 to 54.998
	$-11 \le h \le 11$,	$-21 \le h \le 21,$	$-20 \le h \le 21$,	$-14 \le h \le 15$,
Index ranges	$-16 \le k \le 16,$	$-26 \le k \le 26,$	$-10 \le k \le 10,$	$-23 \le k \le 23,$
	$-22 \le l \le 22$	$-21 \le l \le 21$	$-27 \le l \le 24$	$-9 \le l \le 8$
Reflections collected	16514	53585	21892	7523
	$8351 [R_{int} = 0.0246,$	$12565 [R_{int} = 0.0373,$	$3225 [R_{int} = 0.1226,$	3561 [$R_{int} = 0.0336$,
Independent reflections	$R_{sigma} = 0.0384$]	$R_{sigma} = 0.0327]$	$R_{sigma} = 0.0425$]	$R_{sigma} = 0.0539$]
Data/restraints/parameters	8351/2/477	12565/14/721	3225/0/210	3561/0/195
Goodness-of-fit on F ²	1.045	1.046	1.033	1.055
Final R indexes [I>=2σ (I)]	$R_1 = 0.0509, wR_2 = 0.1203$	$R_1 = 0.0420, wR_2 = 0.0983$	$R_1 = 0.0569, wR_2 = 0.1174$	$R_1 = 0.0494, wR_2 = 0.1108$
Final R indexes [all data]	$R_1 = 0.0688, wR_2 = 0.1342$	$R_1 = 0.0489, wR_2 = 0.1023$	$R_1 = 0.0630, wR_2 = 0.1223$	$R_1 = 0.0740, wR_2 = 0.1229$
Largest diff. peak/hole / e Å-3	2.59/-0.58	1.27/-1.11	0.37/-0.55	0.46/-0.28
CCDC number	1504001	1504002	1504004	1504003

Table 2S. Crystal data for	[4b(OTf)(EtOH)](OTf)	, [4c (OTf) ₂], [5 a	[(OTf), and [5d](OTf).
		j = -(

Theoretical study of bonding situation in solid state structures of 2 and [4(OTf)₂]

Inspection of the crystallographic data suggests the presence of different types of noncovalent interactions in solid-state structures of 2a-c, [4b(OTf)(EtOH)](OTf), and [4c(OTf)₂], viz. intra- and intermolecular hydrogen (HB's) and halogen (XB's) bonds. Besides, in [4c(OTf)₂], the coordination polyhedron of zinc metal center is supplemented by two triflate anionic ligands to distorted octahedron. In order to (i) confirm or deny the hypothesis on the existence of these weak contacts in 2a-c, [4b(OTf)(EtOH)](OTf), and [4c(OTf)₂], and to quantify their energies from theoretical point of view; (ii) to understand more deeply the nature of Zn-O contacts and to compare them with other ordinary Zn-N coordination bonds in [4c(OTf)₂], we carried out DFT calculations and performed topological analysis of the electron density distribution within the formalism of Bader's theory (QTAIM method)⁴ for **2a–c**, [**4b**(OTf)(EtOH)](OTf), and [**4c**(OTf)₂]. Results are summarized in **Table 3S**, the contour line diagrams of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$, bond paths, and selected zero-flux surfaces for 2a-b, [4b(OTf)(EtOH)](OTf), and [4c(OTf)₂] are shown in Figures 76S and 77S. The Poincare-Hopf relationship in all cases is satisfied, thus all critical points have been found.

Table 3S. Values of the density of all electrons – $\rho(\mathbf{r})$, Laplacian of electron density – $\nabla^2 \rho(\mathbf{r})$, energy density – H_b, potential energy density – V(\mathbf{r}), and Lagrangian kinetic energy – G(\mathbf{r}) (Hartree) at the bond critical points (3, -1), corresponding to non-covalent interactions and coordination bonds in solid state structures of 2a-c, [4b(OTf)(EtOH)](OTf), and [4c(OTf)₂], bond lengths -l (Å) and Wiberg bond indices – WI, as well as energies for these contacts E_{int} (kcal/mol), defined by two approaches.

Contact	ρ(r)	$ abla^2 ho(\mathbf{r})$	H_{b}	V(r)	G(r)	E _{int} ^a	E_{int}^{b}	l	WI
2a									
0 110	0.038	0.155	0.000	-0.038	0.038	11.9	10.2	1.76	0.04
0-11.0	0.036	0.149	0.001	-0.036	0.037	11.3	10.0	1.78	0.03
N HO			BCP	not foun	d			2.19	0.00
N-II ^m O			BCP	not foun	d			2.22	0.00
				2b				1	
О НО	0.035	0.153	0.001	-0.035	0.037	11.0	10.0	1.79	0.03
0-11 0	0.032	0.139	0.002	-0.031	0.033	9.7	8.9	1.83	0.01
N HO			BCP	not foun	d			2.26	0.00
			BCP	not foun	d			2.24	0.00
Cl…Cl	0.009	0.035	0.002	-0.005	0.007	1.6	1.9	3.33	0.01
				2c					
0 110	0.033	0.143	0.002	-0.033	0.034	10.4	9.2	1.81	0.03
0-11.0	0.028	0.117	0.002	-0.025	0.027	7.8	7.3	1.90	0.02
N HO			BCP	not foun	d			2.23	0.00
	BCP not found							2.25	0.00
			[4b (OT	f)(EtOH)	(OTf)				
Cl…F	0.007	0.033	0.001	-0.005	0.007	1.6	1.9	3.09	0.00
			[4	$1c(OTf)_2$					
7n O	0.023	0.087	-0.002	-0.025	0.023	7.8	6.2	2.51	0.14
	0.019	0.074	0.000	-0.019	0.019	6.0	5.1	2.60	0.12
	0.095	0.422	-0.023	-0.152	0.129	47.7	34.7	1.95	0.31
7n N	0.091	0.402	-0.021	-0.143	0.122	44.9	32.8	1.97	0.29
	0.067	0.288	-0.013	-0.097	0.085	30.4	22.9	2.09	0.25
	0.064	0.272	-0.012	-0.093	0.080	29.2	21.5	2.11	0.24

^a $E_{int} = -V(\mathbf{r})/2^{5}$ ^b $E_{int} = 0.429G(\mathbf{r})^{6}$

Figure 77S. Contour line diagrams of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$, bond paths and selected zero-flux surfaces for HB's in **2a** (top) and XB's in **2b** (down left) and [**4b**(OTf)(EtOH)](OTf) (down right). Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown, ring critical points (3, +1) – in orange, length unit – Å.

Figure 77S. Contour line diagram of the Laplacian distribution $\nabla^2 \rho(\mathbf{r})$, bond paths and selected zero-flux surfaces for contacts Zn–O and Zn–N in [4c(OTf)₂]. Bond critical points (3, -1) are shown in blue, nuclear critical points (3, -3) – in pale brown, ring critical points (3, +1) – in orange, length unit – Å.

The OTAIM analysis demonstrates the presence of appropriate bond critical points (BCPs) (3, -1) for intramolecular O-H···O HB's in **2a**-c, but does not reveals any BCPs for intramolecular N-H…O HB's, despite the fact that lengths of corresponding contacts are less than the sum of Bondi's (the shortest)⁷ van der Waals radii of these atoms (vdw r(H + O) = 2.72 Å) (**Table 3S**, Figure 77S). In 2b and [4b(OTf)(EtOH)](OTf), the BCPs for intermolecular Cl...Cl and intramolecular Cl…F XB's were successfully found (vdw r(Cl + Cl) = 3.50 Å; vdw r(Cl + F) = 3.22Å) (Table 3S, Figure 77S). The low magnitude of the electron density, positive values of the Laplacian, and zero or close to zero positive energy density in these BCPs are typical for hydrogen and halogen bonding. We have defined energies for these contacts according to the procedures proposed by Espinosa et al.⁵ and Vener et al.⁶ (Table 3S), and one can state that strength of O-H…O contacts (7.3–11.9 kcal/mol) is corresponds to moderate HB's following the classification of Jeffrey ("weak" HB's: <4 kcal/mol, "moderate" HB's: 15-4 kcal/mol, "strong" HB's: 40-15 kcal/mol),⁸ and both Cl···Cl and Cl···F XB's are weak (1.6–1.9 kcal/mol). The balance between the Lagrangian kinetic energy $G(\mathbf{r})$ and potential energy density $V(\mathbf{r})$ at the BCPs (3, -1) reveals the nature of these interactions, if the ratio $-G(\mathbf{r})/V(\mathbf{r}) > 1$ is satisfied, than the nature of appropriate interaction is purely non-covalent, in case the $-G(\mathbf{r})/V(\mathbf{r}) < 1$ some covalent component takes place.9 Based on this criterion one can state that the covalent contribution in all discussed above HB's and XB's is absent. The negligible values of the Wiberg bond indices for these contacts (0.00–0.04) computed by using the natural bond orbital (NBO) partitioning scheme¹⁰ additionally confirm the electrostatic nature of these non-covalent interactions.

In [4c(OTf)₂], the QTAIM analysis reveals the presence of two BCPs for Zn–O and four BCPs for Zn–N contacts. The properties of electron density in BCPs for Zn–N contacts are typical for ordinary coordination bonds (the $\rho(\mathbf{r})$ and $\nabla^2 \rho(\mathbf{r})$ values are positive and relatively high; the H_b values are significantly negative; the $-G(\mathbf{r})/V(\mathbf{r}) \ll 1$; Wiberg bond indices for these contacts are noticeable), whereas Zn–O contacts can be classified as non-covalent close shell interactions with some contribution of covalent component.

Bond	2a	2b	2c
Zn–O	0.29	0.29	0.31
0–C	1.31	1.29	1.30
C=O	1.53	1.55	1.54
O•••H	0.03	0.03	0.03
Н–О	0.72	0.73	0.73
O–N	1.01	1.00	1.00
Zn–N	0.30	0.29	0.31

Table 4S. Calculated Wiberg bond indices for selected bonds in 2a–c.

Table 5S.	Cartesian	atomic	coordinates	of model	structures.
-----------	-----------	--------	-------------	----------	-------------

Atom	Х	Y	Z	
2a				
Zn	-2.190015	4.359975	6.321676	
0	-3.532308	2.985942	5.872890	
0	-3.549543	5.739980	6.704811	
0	-1.747598	2.976104	8.907298	
Н	-2.205242	2.427967	8.463847	
0	-3.242129	7.192544	5.037789	
0	-1.836431	5.491913	3.662709	
Н	-2.298640	6.075187	4.051896	
0	-2.966952	1.343815	7.270743	
N	-1.262692	3.996131	8.045835	
Ν	-1.192107	4.674275	4.630138	
С	0.348072	5.753684	7.837290	
С	0.691615	3.208887	4.955520	
N	0.267296	4.278105	9.766300	
Н	-0.079080	3.610327	10.222062	
Н	0.954325	4.722413	10.090760	
Ν	0.361408	4.485062	2.923007	
Н	-0.083223	5.056214	2.420880	
Н	1.105532	4.123327	2.625013	
С	-0.443350	6.830106	7.455899	
Н	-1.370165	6.837660	7.663725	
С	-0.247685	4.616650	8.578941	
С	-3.637786	1.794974	6.327113	
С	-3.806857	6.835728	6.080101	
С	2.078090	3.382815	5.068255	
Н	2.501555	4.104002	4.618136	
С	1.712974	5.734534	7.551298	
Н	2.257544	5.008779	7.831956	
С	-0.098427	4.167248	4.143500	
C	-4.653775	0.911629	5.641881	
Н	-5.555074	1.164792	5.931155	
Н	-4.486101	-0.024596	5.878840	
Н	-4.579588	1.020730	4.670451	
C	0.085364	2.135978	5.594694	
Н	-0.850373	1.992268	5.504424	
С	-4.868129	7.714328	6.691270	
Н	-5.638999	7.166191	6.948745	
НН	-5.150201	8.387202	6.037838	
Н	-4.505291	8.160568	7.485237	
С	2.831725	2.508430	5.833705	
Н	3.772321	2.628248	5.903459	
С	0.127580	7.896689	6.767179	
Н	-0.404648	8.640188	6.510730	
С	1.477261	7.864012	6.459440	
Н	1.866424	8.583969	5.975264	
С	2.260059	6.803929	6.845140	

TT	2.10(104	(700010	((07(71
H	3.186194	6.799010	6.627671
	0.855933	1.2/125/	6.3/1222
H	0.440605	0.542867	6.819495
	2.219544	1.463983	6.492266
Н	2.733971	0.876668	7.031835
	1	2b	
Zn	2.883620	9.253886	2.543660
Cl	3.458599	7.176923	6.056853
Cl	4.597284	6.448660	-0.820062
0	2.308390	9.029033	0.690098
0	5.694311	8.502577	3.345735
Н	5.697802	9.321861	3.377022
0	3.364905	11.162870	2.510599
0	0.120170	8.666434	0.920764
0	0.196826	8.372549	3.544607
Н	0.095681	8.429634	2.733539
0	5.403670	11.085064	3.441624
Ν	0.418175	9.063918	5.996938
Н	-0.314141	8.726691	5.700150
Н	0.487678	9.280632	6.826246
N	4.508867	8.058578	2.715552
N	1.441485	8.957147	3.907643
N	5.804218	6.169469	2.274993
Н	6.501207	6.508811	2.648670
Н	5.842795	5.381900	1.931718
С	1.133184	8.865176	0.230539
С	2.414150	5.812156	2.462465
Н	2.407810	6.076441	3.354222
С	3.693344	8.905347	6.235964
С	4.427804	11.704654	2.978012
С	2.369857	5.053129	-0.209006
Н	2.354815	4.811044	-1.105829
С	3.398719	5.834356	0.287541
С	4.659554	6.868239	2.226859
С	1.367690	5.045729	1.970985
Н	0.665741	4.802587	2.529600
С	1.448913	9.251032	5.169403
С	4.063536	11.636997	6.523505
Н	4.195672	12.553538	6.613441
С	4.839762	9.376832	6.868048
Н	5.471827	8.782719	7.201190
С	1.013277	8.911690	-1.283167
Н	1.252672	9.787002	-1.597309
Н	0.107616	8.717176	-1.539041
Н	1.601324	8.261549	-1.672044
С	2.909709	11.151770	5.916756
Н	2.261387	11.745883	5.617815
С	2.719640	9.781716	5.755885
С	1.368865	4.639787	0.643484
Н	0.691401	4.086903	0.326809

С	3.467952	6.188498	1.641643
С	4.468007	13.216364	2.964078
Н	3.966700	13.543021	2.212925
Н	5.379435	13.512363	2.891876
Н	4.086015	13.554649	3.776033
С	5.021851	10.737371	6.994718
H	5.794577	11.060856	7.400062
Zn	0.540159	1.317514	8.877161
Cl	1.115138	3.394477	12.390353
Cl	2.253823	4.122740	5.513439
0	-0.035071	1.542367	7.023598
0	3.350850	2.068823	9.679235
Н	3.354341	1.249539	9.710522
0	1.021444	-0.591470	8.844100
0	-2.223291	1.904966	7.254264
0	-2.146635	2.198851	9.878107
Н	-2.247780	2.141766	9.067039
0	3.060209	-0.513664	9.775124
N	-1.925286	1.507482	12.330438
Н	-2.657602	1.844709	12.033650
Н	-1.855784	1.290768	13.159747
N	2.165406	2.512822	9.049052
N	-0.901977	1.614253	10.241143
N	3.460757	4.401931	8.608493
Н	4.157745	4.062589	8.982170
Н	3.499334	5.189500	8.265218
С	-1.210277	1.706224	6.564040
С	0.070689	4.759244	8.795965
Н	0.064349	4.494959	9.687722
С	1.349883	1.666053	12.569464
С	2.084342	-1.133254	9.311512
С	0.026395	5.518271	6.124495
Н	0.011354	5.760356	5.227671
С	1.055258	4.737044	6.621041
С	2.316092	3.703161	8.560359
C	-0.975771	5.525671	8.304485
Н	-1.677720	5.768813	8.863100
C	-0.894549	1.320368	11.502903
C	1.720075	-1.065597	12.857005
НН	1.852211	-1.982137	12.946941
C	2.496301	1.194568	13.201548
Н	3.128365	1.788681	13.534690
С	-1.330184	1.659710	5.050333
Н	-1.090789	0.784398	4.736191
Н	-2.235846	1.854224	4.794460
Н	-0.742137	2.309851	4.661456
С	0.566248	-0.580370	12.250256
Н	-0.082074	-1.174483	11.951315
С	0.376179	0.789684	12.089385
С	-0.974597	5.931613	6.976984

Н	-1 652060	6 484497	6 660309
C	1 124491	4 382902	7 975143
C	2 124546	-2 644964	9 297578
е	1 623239	-2 971621	8 546425
Н	3 035974	-2 940963	9 225376
Н	1 742554	-2 983249	10 109533
C II	2 678389	-0.165971	13 328218
Ц	2.070307	0.189456	13.733562
11	5.451110	-0.407430	15.755502
7n	_17 635072	2 247619	11 /18870
	-17.035772	1 255805	8 68/065
Н	-17.523200	1.253005	8 529376
0	-18 339308	1 247445	14 111805
	_17 799322	1.27/445	14 269925
0	-18 409430	3 567310	8 768943
0	-16.487325	3.307310	12 044007
N N	-10.467525	0.881114	12.044007
N	-10.234227	-1 134633	13 543385
Н	-19.0/0117	-0.847411	14 375256
Н	-19 352851	_1 949134	13 368486
0	-16 545848	3 172028	14 200847
0	_19 271025	3.112020	10 772930
N N	-12.71023	0.186202	9 127804
Н	-15.098355	0.153995	8 329736
Н	-13.078555	-0 188314	9 264244
C II	-16 155831	3 882604	13 262297
	-10.155651	3.695962	9 633761
<u>C</u>	-15 355986	0.803325	10 129920
<u> </u>	-18 684621	-0.335005	12 547148
N N	-16 509867	1 377065	10.007686
C	-18 744826	-0.866858	11 141099
Н	-18 601520	-0.121436	10 506172
Н	-19 645629	-1 238998	10.972814
C	-14 677344	0.847587	11 472157
Н	-14 364289	-0.060718	11.708907
Н	-15 330514	1 131641	12 158402
C	-15 216785	5 026917	13 554408
H	-14 340345	4 672641	13 816756
Н	-15.580928	5.570210	14.283397
Н	-15.117225	5.580770	12.752421
C	-13.487861	1.810098	11.481221
H	-12.794730	1.478350	10.872382
Н	-13.123112	1.870816	12.388661
Н	-13.782348	2.697108	11.187151
С	-17.697061	-1.954501	10.884752
Н	-17.760409	-2.255363	9.953796
Н	-17.859660	-2.712068	11.484772
Н	-16.802814	-1.591866	11.051200
С	-20.477282	4.593795	9.373617
Н	-20.421497	5.383656	9.951346

Н	-21.305521	4.106820	9.566765		
Н	-20.474064	4.874154	8.435067		
[4b (OTf)(EtOH)](OTf)					
Zn	3.259403	8.460107	2.552270		
Cl	0.328229	11.239742	1.837162		
S	2.376821	9.117224	-0.912670		
Cl	2.510289	8.447731	7.506858		
0	2.922323	10.449315	-0.850001		
N	2.498329	6.677781	2.875008		
Н	2.857197	5.979470	2.477618		
0	2.031644	8.527875	0.367918		
F	0.134660	8.153425	-1.870035		
0	0.861155	7.585595	4.214541		
N	0.005984	9.691526	5.433270		
Н	-0.334468	8.901763	5.624031		
Н	-0.284301	10.408489	5.852360		
F	-0.076744	10.100480	-1.006917		
N	3.938055	10.211261	1.984685		
Н	3.647465	10.571655	1.237190		
N	5.505065	11.934202	2.394545		
N	1.483173	8.834580	3.816179		
С	1.458259	4.098458	3.478381		
Н	1.533906	4.163591	2.503528		
Н	0.862387	3.355340	3.711569		
Н	2.344366	3.939035	3.865408		
N	0.911755	5.344735	4.008883		
N	4.567812	9.065569	4.192032		
0	5.139540	10.365435	3.946376		
С	1.486732	6.509244	3.654567		
F	0.870220	9.896771	-2.922617		
С	6.281712	12.670194	3.399033		
Н	6.937924	13.243558	2.948851		
Н	6.749235	12.034386	3.980382		
Н	5.678572	13.224444	3.936660		
С	4.811466	10.837355	2.707729		
C	2.656546	13.699069	3.939898		
Н	3.041425	14.560611	3.824924		
С	2.897248	12.975558	5.105836		
Н	3.446423	13.343973	5.789205		
C	1.305870	11.902336	3.111273		
C	2.337715	11.723670	5.271011		
Н	2.499954	11.240549	6.074212		
0	3.024035	8.212377	-1.825826		
С	1.535880	11.154650	4.276239		
С	3.339411	7.137803	6.751104		
С	4.753466	8.769962	5.452379		
0	4.841762	7.438047	1.361880		
Н	4.837824	6.587090	1.425035		
С	2.963936	5.814955	7.073356		
Н	2.283918	5.650083	7.716241		

С	0.963127	9.799674	4,507969
C	0.745659	9.336590	-1.708423
C	1 854494	13 160072	2 943993
H	1 683061	13 653423	2.148888
N	5 291140	9 561126	6 371364
Н	5 560519	10 370622	6 151941
Н	5 378982	9 278595	7 199666
C	-0.095506	5 244063	5 060494
H	-0.845800	4 698650	4 743100
Н	-0 418576	6 141029	5 288824
Н	0 300207	4 827302	5 853979
C	4 326856	7 393231	5 824831
C	4 953482	6 284216	5 178707
Н	5 627668	6 432945	4 526106
C	5 305651	12 538479	1 073634
H	4 458135	13 028964	1.063918
Н	5 283932	11 833825	0 393504
Н	6.042240	13 155605	0.882550
C	4 576705	4 990711	5 505817
Н	4 996515	4 250958	5 081546
C	3 592273	4 777659	6 448284
H	3 344756	3 885924	6 666897
C	6.067425	7 868966	0 772434
Н	5 915877	8 733982	0.317394
Н	6 340208	7 210804	0.0842.07
C	7 203015	8 032519	1 773197
H	8.023989	8.280512	1.297106
Н	7.343839	7,188189	2.247669
Н	6 973331	8 735232	2 416082
	[4c(OTf) ₂]	
Zn	12.972334	19.228923	11.253628
S	11.218292	20.852792	14.061771
0	12.321241	20.087452	13.519252
0	15.634807	18.793630	12.448789
0	11.952413	19.488056	8.519979
N	13.663509	17.642658	12.194534
Н	13.180158	16.937605	12.290082
0	10.256474	21.293807	13.075520
N	14.906412	19.837925	11.757280
N	11.696422	20.524176	10.547543
Н	11.442115	21.208792	11.002611
N	15.499232	16.755722	13.371881
0	10.642144	20.317769	15.269888
N	13.058899	18.842269	9.185577
F	12.878695	22.197909	15.566250
N	10.136899	20.763281	8.770995
F	11.100233	23.272858	15.039925
N	16.929076	20.959469	12.073074
Н	17.287800	20.280984	12.464984
Н	17.382112	21.680871	11.964570

N	13 298048	17 924679	7 052748
H	12 636177	18 374277	6 740193
Н	13 735927	17 389248	6 542618
C II	14 860940	17.691705	12 665797
C	15 671016	20 887942	11 637440
<u> </u>	13.6/18352	18 061602	8 3 2 8 8 2 3
C	11 258542	20 203246	0.326663
	12 621125	20.293240	12 577552
	12.031123	22.984707	10.070222
	15.0/1430	22.067333	11.556467
П	13.133962	22.033914	10.910612
П	14.124900	21.928130	14 501225
	11.99/883	22.420003	14.391333
	14.833077	15.460497	13.032048
П	14.2/31/1	13.3/4304	14.422911
Н	15.49/548	14.804036	13.820472
H	14.301802	15.223000	12.895/60
	14./69996	17.219626	8.856827
H	15.0/98/9	17.589523	9.698946
H	15.511022	17.242106	8.231/15
	9.348/17	21.797358	9.413921
<u> </u>	9.437977	21./21/43	10.366163
<u> </u>	8.427487	21.69/220	9.167763
H	9.663653	22.659769	9.130515
<u> </u>	16.804449	16.962129	14.000232
<u> </u>	17.169909	17.802061	13.711968
<u> </u>	17.397270	16.250946	13.747596
H	16.701716	16.968260	14.955713
C	15.748487	22.396141	9.634168
Н	15.578388	21.682914	9.015534
Н	16.694979	22.484017	9.768583
Н	15.398183	23.217680	9.281125
C	9.840488	20.536438	7.360446
Н	10.155425	21.282363	6.843838
Н	8.892312	20.442431	7.242225
Н	10.280052	19.735335	7.065704
C	14.337169	15.776824	9.070595
Н	14.071073	15.394665	8.231715
Н	13.597827	15.752300	9.682751
НН	15.069774	15.274091	9.433355
S	10.222622	16.671116	11.766672
F	9.249352	14.345261	11.013947
0	11.051392	16.018381	12.751628
0	10.877925	17.712141	11.017186
0	8.888944	16.976434	12.205870
F	9.309981	15.805434	9.462505
F	11.117074	14.867408	10.084377
С	9.968484	15.349705	10.516773

References

- 1. D. S. Bolotin, N. A. Bokach and V. Y. Kukushkin, *Coordination Chemistry Reviews*, 2016, **313**, 62-93.
- 2. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer and G. Orpen, *J. Chem. Soc. Perkin Trans. II,*, 1987, S1–S19.
- a) D. S. Bolotin, K. I. Kulish, N. A. Bokach, G. L. Starova, V. V. Gurzhiy and V. Y. Kukushkin, *Inorganic Chemistry*, 2014, 53, 10312-10324; b) K. I. Kulish, A. S. Novikov, P. M. Tolstoy, D. S. Bolotin, N. A. Bokach, A. A. Zolotarev and V. Y. Kukushkin, *Journal of Molecular Structure*, 2016, 1111, 142-150.
- 4. R. F. W. Bader, *Chemical Reviews*, 1991, **91**, 893-928.
- 5. E. Espinosa, E. Molins and C. Lecomte, *Chemical Physics Letters*, 1998, **285**, 170-173.
- 6. M. V. Vener, A. N. Egorova, A. V. Churakov and V. G. Tsirelson, *Journal of Computational Chemistry*, 2012, **33**, 2303-2309.
- 7. A. Bondi, J. Phys. Chem. , 1964, **68**, 441–451.
- 8. T. Steiner, Angew. Chem. Int. Ed., 2002, **41**, 48–76.
- 9. E. Espinosa, I. Alkorta, J. Elguero and E. Molins, *Journal of Chemical Physics* 2002, **117**, 5529-5542.
- 10. E. D. Glendening, C. R. Landis and F. Weinhold, *Wiley Interdiscip. Rev. Comput. Mol. Sci.*, 2012, **2**, 1–42.