Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting information

Carbon nitride supported copper nanoparticles: A heterogeneous catalyst for the *N*-arylation of hetero-aromatic compounds

Debkumar Nandi, Samarjeet Siwal, Kaushik Mallick*

Department of Chemistry, University of Johannesburg, P.O. Box: 524, Auckland Park 2006, South Africa.

List of contents

General Considerations	S1
Table S1	S2
Characterization of Products	S3-S10
NMR Spectra	S11-S40

General Considerations:

Solvents were distilled from appropriate drying agent prior to use. Commercially available reagents were used without further purification unless otherwise stated. ¹H and ¹³C NMR spectra were recorded on a Bruker AVANCE^{III}-400 spectrometer.¹H NMR (400 MHz) and ¹³C NMR (100 MHz) were registered in CDCl₃ or DMSO-d₆ as solvent and tetramethylsilane (TMS) as an internal standard. Chemical shifts are reported in δ units (ppm). All coupling constants (*J*) are reported in hertz (Hz).

	N H 1a	+ Br CN 2d	Base, Solver reflux	nt, Catlyst	N CN 3ad	
Entry	Catalyst (wt%)	Solvent	Base	T (⁰ C)	Time	Yield (%) ^b
1	Cu-gCN(10)	Xylene	Na ₂ CO ₃	100	18	67
2	Cu-gCN(10)	Toluene	K ₂ CO ₃	100	18	66
3	Cu-gCN(10)	Toluene	Cs_2CO_3	100	12	92
4	Cu-gCN(10)	Toluene	-	100	12	с
5	Cu-gCN(5)	Toluene	Cs ₂ CO ₃	100	12	92
6	Cu-gCN(5)	Toluene	K ₃ PO ₄	100	12	75
7	Cu-gCN(5)	Toluene	KO ^t Bu	100	12	47
8	Cu-gCN(5)	Toluene	Cs_2CO_3	80	12	0
9	Cu-gCN(5)	Toluene	KOAc	100	12	66
10	Cu-gCN(5)	DMAc	Cs ₂ CO ₃	100	22	75
11	Cu-gCN(5)	NMP	Cs ₂ CO ₃	100	20	70
12	Cu-gCN(5)	DMF	Cs_2CO_3	100	20	32
13	Cu-gCN(5)	THF	Cs ₂ CO ₃	100	20	38

(a) Reaction condition: Pyrrole 1a (0.07mL, 1.0 mmol), 4-bromobenzonitrile 2d (216 mg, 1.2 mmol), Base (2.0 mmol) and Cu-gCN catalyst (5 mg) and solvent (4 mL). (b) Isolated yield,
(c) Homocoupling product of aryl halide.

Characterization of N-arylated products:

1-phenyl-1*H*-pyrrole (3aa):¹ White solid, (112 mg; 78% yield) mp: 59-59°C. Synthesized following the general procedure from pyrrole 1a (0.07mL, 1.0 mmol), bromobenzene 2a (0.126 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 6.35 (s, 2H), 7.09 (d, J=2 Hz, 2H), 7.22-7.26 (m, 1H), 7.38-7.44 (m, 4H); ¹³C NMR (100 MHz, CDCl₃): δ 110.4 (2C), 119.3 (2C), 120.5 (2C), 125.6, 129.5 (2C), 140.7.

1-(4-nitrophenyl)-1*H***-pyrrole** (**3ab**):¹ White solid, (165 mg; 88% yield) mp: 185-186°C. Synthesized following the general procedure from pyrrole 1a (0.07mL, 1.0 mmol), 4nitrobromobenzene **2b** (242 mg, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 6.41 (d, J=2.0 Hz, 2H), 7.16 (t, J=2 Hz, 2H), 7.50 (d, J=9.2 Hz, 2H), 8.30 (d, J=9.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 112.5 (2C), 119.0 (2C), 119.4 (2C), 125.6 (2C), 114.6, NO_2 145.2.

1-(4-methoxyphenyl)-1*H*-pyrrole (3ac):¹ White solid, (142 mg; 82% yield) mp: 112-113°C. Synthesized following the general procedure from pyrrole 1a (0.07mL, 1.0 mmol), 4methoxybromobenzene 2c (0.15 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 3.82 (s, 3H), 6.30 (s, 2H), 6.93 (d, J=8.8 Hz, 2H), 6.98 (s, 2H), 7.29 (d, J=8.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 55.2, 109.8 (2C), 114.5 (2C), 116.3 (2C), 122.1 (2C), OMe 138.1, 159.4.

4-(1*H***-pyrrol-1-yl)benzonitrile (3ad)**² White solid, (cycle: 1, 1.55 g; 92%, cycle: 2, 1.46 g; 87%, cycle: 3, 1.43 g; 85%, cycle: 4, 1.41 g; 84%, cycle: 5, 1.39 g; 83% and cycle: 6, 1.34 g; 80% yield) mp: 104-105°C. Synthesized following the general procedure from pyrrole 1a (0.07mL, 1.0 mmol), 4-bromobenzonitrile 2d (218 mg, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 6.39 (t, J=2.2 Hz, 2H), 7.12 (t, J=2.2 Hz, 2H), 7.46 (td, J=9.2, 2 CN Hz, 2H), 7.69 (td, J=9.0, 2.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 108.5, 112.1

(2C), 118.5, 118.8 (2C), 119.9 (2C), 133.7 (2C), 143.6.

1-*p***-tolyl-1***H***-pyrrole (3ae):² White solid, (134 mg; 85% yield) mp: 84-85°C. Synthesized following the general procedure from pyrrole 1a (0.07mL, 1.0 mmol),** *p***-bromotoluene 2e** (0.148 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 2.36 (s, 3H), 6.31 (t, *J*=2.0 Hz, 2H), 7.04 (t, *J*=2.0 Hz, 2H), 7.20 (d, *J*=8.4, Hz, 2H), 7.27 (d, *J*=8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 20.8, 110.0 (2C), 119.4 (2C), 120.5 (2C), 130.0 (2C), 135.4, 137.7.

1-(4-nitrophenyl)-1*H***-pyrazole (3bb)**:³ White solid (181 mg, 85% yield), mp: 170-172^oC, synthesized following the general procedure from pyrazole **1b** (68 mg, 1 mmol), 4nitrobromobenzene **2b** (242 mg, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 6.54 (d, *J*= 1.2 Hz, 1H), 6.78 (d, *J*= 1.2 Hz, 1H), 7.87 (td, *J*= 10, 2.6 Hz, 2H), 8.01 (d, *J*= 2.4 Hz, 1H), 8.31 (t, *J*= 2.4 Hz, 2H),; ¹³C NMR (CDCl₃, 100 MHz): δ 109.3, 118.6 (2C), 125.4 (2C), 127.0, 142.8, 144.4, 145.4.

1-(4-methoxyphenyl)-1*H***-pyrazole (3bc)**:³ light yellow viscous mass (162 mg, 93% yield). Synthesized following the general procedure from pyrazole **1b** (68 mg, 1 mmol), 4methoxybromobenzene **2c** (0.15 mL, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 3.82 (s, 3H), 6.42 (t, *J*= 2.0 Hz, 1H), 6.95 (dd, *J*= 6.8, 2.0 Hz, 2H), 7.57 (dd, *J*= 6.8, 2.0 Hz, 2H), 7.68 (d, *J*= 1.2 Hz, 1H), 7.85 (d, *J*= 2.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 55.6, 107.2, 114.5 (2C), 120.9 (2C), 126.9, 133.9, 140.6, 158.2.

4-(1*H***-pyrazol-1-yl)benzonitrile (3bd**):⁴ White solid (161 mg, 95% yield), mp: 86-87⁰C, synthesized following the general procedure from pyrazole **1b** (68 mg, 1 mmol), 4bromobenzonitrile **2d** (218 mg, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 6.48 (t, *J*= 2.0 Hz, 1H), 7.68 (dd, *J*= 7.0, 1.8 Hz, 2H), 7.72 (d, *J*= 1.6, Hz, 1H), 7.76-7.78 (m, 1H), 7.95 (d, *J*= 2.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 108.6, 109.2, 118.2, 118.7 (2C), 126.7, 133.4 (2C) 142.5, 142.7.

1-(4-(1H-pyrazol-1-yl)phenyl)ethanone (**3bg**):⁵ White solid (167 mg, 90% yield), mp: 107-108^oC, synthesized following the general procedure from pyrazole **1b** (68 mg,

1 mmol), 1-(4-bromophenyl)ethanone **2g** (236 mg, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 2.57 (s, 3H), 6.47 (t, *J*= 2.0 Hz, 1H), 7.20 (s, 1H), 7.76 (d, *J*=8.4 Hz, 2H), 7.96 (d, *J*=2.8 Hz, 1H), 8.01 (d, *J*=8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 26.6, 108.5, 118.3 (2C), 126.8, 130.0 (2C), 134.7, 142.0, 143.2, 196.8.

1-phenyl-1*H***-indole (3ca**):⁶ Colourless liquid, (154 mg; 80% yield). Synthesized following the general procedure from indole **1c** (117 mg, 1.0 mmol), bromobenzene **2a** (0.126 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 6.78 (dd, *J*=3.2, 0.8 Hz, 1H), 7.25-7.34 (m, 4H), 7.41-7.65 (m, 4H), 7.73 (d, *J*=3.2 Hz, 1H), 7.79 (d, *J*=6.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 103.5, 110.5, 120.3, 121.1, 122.3, 124.3 (2C), 126.4, 127.9, 129.3, 129.5 (2C), 135.8, 139.8.

1-(4-nitrophenyl)-1*H***-indole (3cb)**:⁷ Yellow solid (203 mg, 85% yield), mp: 131-132°C, Ssynthesized following the general procedure from indole **1c** (117 mg, 1.0 mmol), 4nitrobromobenzene **2b** (242 mg, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 6.76-6.75 (m, 1H), 7.21-7.20 (m, 1H), 7.30-7.26 (m, 1H), 7.36 (d, *J*= 3.2 Hz, 1H), 7.69-7.62 (m, 4H), 8.39-3.80 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 110.2, 115.5, 117.1, 120.9, 123.0, 122.7, 125.8, 126.1, 126.2, 127.6, 130.3, 137.3, 145.5, 146.0.

1-(4-methoxyphenyl)-1*H***-indole (3cc)**:⁸ White solid (186 mg, 80% yield), mp: 60-61°C, Ssynthesized following the general procedure from indole **1c** (117 mg, 1.0 mmol), 4methoxybromobenzene **2c** (0.15 mL, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 3.87 (s, 3H), 6.65-6.80 (m, 1H), 7.02 (d, *J*=8.8 Hz, 2H), 7.12-7.18 (m, 1H), 7.27 (d, *J*= 3.2 Hz, 1H), 7.39 7.02 (d, *J*=8.8 Hz, 2H), 7.43-7.66 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 55.6, 102.9, 110.4, 114.7 (2C), 116.4, 120.1, 121.0, 122.1, 125.9 (2C), 128.3,

128.9, 138.2, 158.2.

4-(1*H***-indol-1-yl)benzonitrile (3cd**):⁹ White solid (200 mg, 92% yield), mp: 94-95°C, Ssynthesized following the general procedure from indole **1c** (117 mg, 1.0 mmol), 4bromobenzonitrile **2d** (218 mg, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 6.76-6.77 (m, 1H), 7.22-7.31 (m, 2H), 7.34 (d, *J*=3.6 Hz, 1H), 7.58-7.62 (m, 3H), 7.70-7.72 (m, 1H), 7.78 (d, J=8.4 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 105.6, 109.1, 110.3, 118.4, 121.3, 121.5, 123.1, 123.7 (2C), 127.0, 129.8, 133.7 (2C), 135.0, 143.4.

1-*p***-tolyl-1***H***-indole (3ce):¹⁰ Colorless liquid (180 mg, 86% yield). Ssynthesized following the general procedure from indole 1c (117 mg, 1.0 mmol),** *p***-bromotoluene 2e (0.148 mL, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 2.42 (s, 3H) 6.65-6.66 (m, 1H), 7.14-7.19 (m, 2H), 7.28-7.30 (m, 3H), 7.36-7.50 (m, 3H), 7.51 (d,** *J***=7.6, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 21.1, 103.2, 110.5, 120.2, 121.0, 122.2, 124.3 (2C), 128.1, 129.1, 130.1 (2C), 135.1, 136.3, 137.3.**

1-*o***-tolyl-1***H***-indole (3cf):¹¹ Colorless liquid (162 mg, 78% yield). Ssynthesized following the general procedure from indole 1c (117 mg, 1.0 mmol),** *o***-bromotoluene 2f (0.144 mL, 1.2 mmol). ¹H NMR (CDCl₃, 400MHz): δ 2.06n (s, 3H) 6.66 (d,** *J***=2.8 Hz, 1H), 7.01-7.13 (m, 1H), 7.13-7.18 (m, 3H), 7.29-7.37 (m, 3H), 7.56 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 17.6, 102.4, 110.5, 119.8, 120.8, 121.9, 126.7, 128.1, 128.2, 128.3, 128.6, 131.2, 135.8, 136.9, 138.3.**

1-phenyl-1*H***-indole-3-carbaldehyde (3da):**¹² White solid, (181 mg; 82% yield) mp: 79-80°C. Synthesized following the general procedure from 1*H*-indole-3-carbaldehyde **1d** (145 mg, 1.0 mmol), bromobenzene **2a** (0.126 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.35-7.31 (m, 2H), 7.46-7.56 (m, 6H), 7.90 (s, 1H), 8.36 (d, *J*=6.8 Hz, 1H), 10.09 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 111.1, 118.3, 119.7, 122.4, 123.5, 124.6, 124.9 (2C), 128.3, 129.9 (3C), 137.3, 138.1, 184.9.

1-(4-methoxyphenyl)-1H-indole-3-carbaldehyde (3dc):¹³ Light orange solid, (211 mg; 84%

yield) mp: 126-128°C. Synthesized following the general procedure from 1*H*indole-3-carbaldehyde **1d** (145 mg, 1.0 mmol), 4-methoxybromobenzene **2c** (0.15 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 3.88 (s, 3H), 7.06 (d, J=8.8 Hz, 2H), 7.30 (s, 1H), 7.32-7.42 (m, 4H), 7.85 (s, 1H), 8.35 (dd, J=6.8, 1.6 Hz, 1H), 10.08 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 55.6, 111.1, 119.4, 122.1, 123.3, 124.4, 124.7 (2C), 125.4, 130.4 (2C), 137.6, 138.2, 138.3, 158.4, 184.8.

4-(3-formyl-1H-indol-1-yl)benzonitrile (3dd): White solid, (219 mg; 89% yield) mp: 162-163°C.

CN

Synthesized following the general procedure from 1*H*-indole-3-carbaldehyde 1d (145 mg, 1.0 mmol) 4-bromobenzonitrile 2d (218 mg, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.36-7.39 (m, 2H), 7.50-7.52 (m, 1H), 7.68 (td, J=8.8, 2 Hz, 2H), 7.86-7.89 (m, 2H), 7.92 (s, 1H), 10.11 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): § 110.6, 111.6, 117.8, 120.8, 122.6, 124.1, 124.9 (2C), 125.2, 125.8, 134.1 (2C), 136.6, 137.1, 141.9, 184.9.

1-p-tolyl-1H-indole-3-carbaldehyde (3de):¹⁴ Brown viscous mass, (200 mg; 85% vield). Synthesized following the general procedure from 1*H*-indole-3-carbaldehyde 1d (145 mg, 1.0 mmol), *p*-bromotoluene 2e (0.148 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 2.46 (s, 3H), 7.31-7.45 (m, 7H), 7.87 (s, 1H), 8.37 (d, J=7.6, 2 Hz, 1H), 7.86-7.89 (m, 2H), 7.92 (s, 1H),10.08 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 111.1, 119.4, 122.1, 123.3, 124.4, 124.7 (2C), 125.4, 130.4 (2C), 135.5, 137.6, 138.2, 138.3, 184.8.

(E)-1-(4-bromophenyl)-3-(1H-indol-3-yl)prop-2-en-1-one (3dg):¹⁵ White solid, (293 mg; 90% yield) mp: 201-202°C. Synthesized following the general procedure from Br 1*H*-indole-3-carbaldehvde 1d (145)1.0 mg, mmol). 1-(4bromophenyl)ethanone 2g (236 mg, 1.2 mmol). ¹H NMR (400 MHz, =0 CDCl₃): δ 7.21-7.26 (m, 2H), 7.50 (d, J=8.4 Hz, 1H), 7.61 (d, J=15.2 Hz, 1H), 7.74 (d, J=8.4 Hz,, 2H), 8.04-8.13 (m, 5H), 11.95 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 112.9, 113.3, 115.4, 120.9, 121.7, 123.4, 125.6, 126.8, 130.7 (2C), 132.2 (2C), 134.1, 137.9, 138.0, 140.1, 188.3.

1-(1-phenyl-1*H***-indol-3-yl)ethanone (3ea)**:¹⁶ White solid, (186 mg; 79% yield) mp: 144-145°C. Synthesized following the general procedure from 1-(1H-indol-3-yl)ethanone

1e (159 mg, 1.0 mmol), bromobenzene 2a (0.126 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 2.567 (s, 3H), 7.26-7.35 (m, 4H), 7.43-7.52 (m, 4H), 7.92 (s, 1H), 8.45 (d, J=8.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.7, 110.8, 118.7, 122.8, 123.1, 123.9, 124.9 (2C), 126.5, 128.0, 129.9 (2C), 134.6, 137.1, 138.4, 193.3.

1-(1-(4-nitrophenyl)-1H-indol-3-yl)ethanone (3eb):¹⁷ White solid, (232 mg; 83% yield) mp:

193-194°C. Synthesized following the general procedure from 1-(1H-indol-3-yl)ethanone **1e** (159 mg, 1.0 mmol), 4-nitrobromobenzene **2b** (242 mg, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 2.58 (s, 3H) 7.34-7.38 (m, 2H), 7.51-7.53 (m, 1H), 7.71-7.73 (m, 2H), 7.95-7.98 (m, 1H), 7.42-8.44 (m, 3H; ¹³C NMR (100 MHz, CDCl₃): δ 27.8, 110.4, 120.2, 123.2, 123.9, 124.7, 124.8 (2C), 125.6 (2C), 133.5, 136.0, 143.8, 146.4, 193.2.

1-(1-(4-methoxyphenyl)-1H-indol-3-yl)ethanone (**3ec**) : White solid, (200 mg; 75% yield) mp: 115-1116°C.. Synthesized following the general procedure from 1-(1H-indol-3-yl)ethanone **1e** (159 mg, 1.0 mmol), 4-methoxybromobenzene **2c** (0.15 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 2.55 (s, 3H), 3.88 (s, 3H), 7.07 (d, J=8.8 Hz, 2H), 7.30 (s, 1H), 7.31-7.42 (m, 4H), 7.85 (s, 1H), 8.35 (dd, J=6.8, 1.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.8, 55.2, 110.5, 120.5, 120.2, 123.2, 123.9 (2C), 124.7, 124.8, 125.6 (2C), 127.0, 133.5, 136.6, 143.8, 159.5,

193.2.

4-(3-acetyl-1H-indol-1-yl)benzonitrile (**3ed**): White solid, (220 mg; 85% yield) mp: 131-132°C. Synthesized following the general procedure from 1-(1H-indol-3yl)ethanone **1e** (159 mg, 1.0 mmol), 4-bromobenzonitrile **2d** (218 mg, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 2.57 (s, 3H) 7.31-7.37 (m, 2H), 7.84-7.50 (m, 1H), 7.67 (dd, *J*=6.8, 2.0 Hz, 2H), 7.89 (dd, *J*=6.8, 1.6 Hz, 2H), 7.92 (s, 1H), 8.44-8.43 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 27.8, 110.4, 111.3, 117.9, 119.9, 123.1, 123.7, 124.6, 124.9 (2C), 126.9, 133.5, 133.9 (2C),

136.2, 142.2, 193.3.

N-phenylbenzamide (5a):¹⁸ White solid, (168 mg; 85% yield) mp: 163-164°C. Synthesized following the general procedure from benzamide 4 (121 mg, 1.0 mmol), bromobenzene 2a (0.126 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.13 (t, *J*=7.4, 1H), 7.35 (t, *J*=7.6, 2H), 7.43-7.67 (m, 2H), 7.50-7.54 (m,

3H), 7.84 (d, *J*=9.2, 2H), 7.92 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 120.2 (2C), 125.6, 1127.0 (2C), 128.8 (2C), 129.1 (2C), 131.8, 134.9, 137.9, 165.8.

N-(4-nitrophenyl)benzamide (5b):¹⁹ White solid, (228 mg; 94% yield) mp: 203-204°C.

Synthesized following the general procedure from benzamide **4** (121 mg, 1.0 mmol), 4-nitrobromobenzene **2b** (242 mg, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.43-7.47 (m, 4H), 7.56 (t, *J*=7.4, 2H),

7.82-7.84 (m, 3H), 9.19 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 119.9 (2C), 124.9 (2C), 128.0 (2C), 128.6 (2C), 132.3, 134.3, 142.6, 145.6, 166.4.

N-(4-methoxyphenyl)benzamide (5c):²⁰ White solid, (202 mg; 89% yield) mp: 145-146°C.

Synthesized following the general procedure from benzamide **4** (121 mg, 1.0 mmol), 4-methoxybromobenzene **2c** (0.15 mL, 1.2 mmol).¹H NMR (400 MHz, CDCl₃): δ 3.79 (s, 3H), 6.88 (d, *J*=8.8,

2H), 7.42-7.52 (m, 5H), 7.80 (brs, 1H), 7.82 (d, *J*=7.8, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 55.5, 114.2 (2C), 122.1 (2C), 126.9 (2C), 128.7 (2C), 131.0, 131.7, 135.0, 156.6, 165.6.

N-(4-cyanophenyl)benzamide (5d):²¹ White solid, (207 mg; 93% yield) mp: 165-166°C.

Synthesized following the general procedure from benzamide **4** (121 mg, 1.0 mmol), 4-bromobenzonitrile **2d** (218 mg, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.51 (m, 3H), 7.56-7.59 (m, 2H),

7.80-7.85 (m, 4H), 8.50 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 107.1, 120.0, 127.2, 127.8 (2C), 128.8, 128.9 (2C), 132.3, 133.2 (2C), 134.1, 142.3, 166.3.

N-p-tolylbenzamide (5e):²² White solid, (190 mg; 90% yield) mp: 155-156°C. Synthesized

following the general procedure from benzamide **4** (121 mg, 1.0 mmol), *p*-bromotoluene **2e** (0.148 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 2.31 (s, 3H), 7.12 (d, *J*=8.4, 2H), 7.41 (t, *J*=7.6, 2H), 7.47-

7.51 (m, 3H), 7.82 (d, *J*=7.6, 2H), 8.02 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 20.9, 120.4, 126.9 (2C), 128.6 (2C), 129.5 (2C), 131.6 (2C), 134.1, 134.9, 135.3, 165.8.

N-o-tolylbenzamide (5f):²⁰ White solid, (177 mg; 84% yield) mp: 142-143°C. Synthesized following the general procedure from benzamide 4 (121 mg, 1.0 mmol), 4 *o*-bromotoluene 2f (0.144 mL, 1.2 mmol). ¹H NMR (400 MHz, CDCl₃): δ 2.29 (s, 3H) 7.084-7.12 (m, 1H), 7.19-7.24 (m, 2H), 7.44-7.48 (m, 2H),

7.51-7.54 (m, 1H), 7.86 (d, *J*=7.6, 2H); ¹³C NMR (100 MHz, CDCl₃): δ 17.8, 123.3, 125.4, 126.8, 127.0 (2C), 128.7 (2C), 129.5, 130.5, 131.7, 134.9, 135.7, 165.7.

References:

- 1. W. Chen, J. Wang, Organometallics 32 (2013) 1958-1963.
- 2. G. Kaugars, W. Watt, J. Heterocycl. Chem. 30 (1993) 497-500.
- 3. K.Yang, Y. Qiu, Z. Li, Z. Wang, S. Jiang, J. Org. Chem. 76 (2011) 3151-3159.
- 4. A. A. Farahat, W. D. Boykin, Tetrahedron Lett. 55 (2014) 3049-3051.
- 5. Q. Yang, Y. Wang, L. Yang, M. Zhang, Tetrahedron 69 (2013) 6230-6233.
- 6. Y. Zi, Z-J. Cai, S-Y. Wang, S-J. Ji, Org. Lett. 16 (2014) 3094-3097.
- 7. M. Nasrollahzadeh, S. Mahmoud, M. Mehdi, RSC Advances 5 (2015) 40628-40635.
- 8. M. Wen, C. Shen, L. Wang, P. Zhang, J. Jin, RSC Advances 5 (2015) 1522-1528.
- 9. H. Xu, L. L. Fan, Chem. Pharm. Bull. 57 (2009) 321-323.
- 10. D. T. Ziegler, J. Choi, J. M. Munoz-Molina, A. C. Bissember, J. C. Peters, G. C. Fu, *J. Am. Chem. Soc.* 135 (2013) 13107-13112.
- 11. R. Xiao, H. Zhao, M. Cai, Tetrahedron 69 (2013) 5444-5450.
- 12. H. Chen, M. Lei, L. Hu, Tetrahedron 70 (2014) 5626-5631.
- F. Bellina, C. Calandri, S. Cauteruccio and R. Rossi, *Eur. J. Org. Chem.* 13 (2007) 2147-2151.
- 14. C. Sagnes, G. Fournet, G. Satala, A. J. Bojarski, B. Joseph, *Eur. J. Med. Chem.* 75 (2014) 159-168.
- 15. S. Foeldeak, P. Hegyes, G. Dombi, Acta. Chim. Hung. 125 (1988) 275-280.
- 16. R. K. Rao, A. B. Naidu, G. J. Sekar, Tetrahedron 65 (2009) 4619-4624.
- 17. R. Khan, Chem. Pharm. Bull. 25 (1977) 3112-3114.
- 18. N. sharma, G. Sekat, Advance Synth. Catal. 358 (2016) 314-320.
- 19. R. G. Kalkhambkar, H. M. Savanur, RSC Advances, 5 (2015) 60106-60133.
- 20. W. Fan, Y. yang, J. Lei, Q. Jiang, W. zhou, J. Org. Chem. 80 (2015) 8782-8789.
- 21. U. Dutta, D. W. Lupton, D. Maiti, Org. Lett. 18 (2016) 860-863.
- 22. B. Su, J-B Wei, W-L Wu, Z-J Shi, ChemCatchem 7 (2015) 2986-2990.

Figure S4. ¹³C NMR spectrum of 3ab in CDCl₃

Figure S6. ¹H NMR spectrum of 3ac in CDCl₃

Figure S8. ¹³C NMR spectrum of 3ad in CDCl₃

Figure S10. ¹³C NMR spectrum of 3ae in CDCl₃

Figure S12. ¹³C NMR spectrum of 3bb in CDCl₃

Figure S14. ¹H NMR spectrum of 3bc in CDCl₃

Figure S16. ¹H NMR spectrum of 3bd in CDCl₃

Figure S18. ¹H NMR spectrum of 3bg in CDCl₃

Figure S20. ¹H NMR spectrum of 3ca in CDCl₃

Figure S22. ¹³C NMR spectrum of **3cb** in CDCl₃

Figure S24. ¹³C NMR spectrum of 3cc in CDCl₃

Figure S26. ¹³C NMR spectrum of 3cd in CDCl₃

Figure S28. ¹³C NMR spectrum of 3ce in CDCl₃

Figure S30. ¹³C NMR spectrum of 3cf in CDCl₃

Figure S32. ¹³C NMR spectrum of 3da in CDCl₃

Figure S34. ¹³C NMR spectrum of 3dc in CDCl₃

Figure S36. ¹³C NMR spectrum of 3dd in CDCl₃

Figure S38. ¹³C NMR spectrum of 3de in CDCl₃

Figure S40. ¹³C NMR spectrum of 3dg in DMSO-d₆

Figure S42. ¹³C NMR spectrum of 3ea in CDCl₃

Figure S44. ¹³C NMR spectrum of **3eb** in CDCl₃

Figure S46. ¹³C NMR spectrum of 3ec in CDCl₃

Figure S48. ¹³C NMR spectrum of 3ed in CDCl₃

Figure S50. ¹³C NMR spectrum of 5a in CDCl₃

Figure S51. ¹H NMR spectrum of 5b in CDCl₃

Figure S52. ¹³C NMR spectrum of 5a in DMSO-d₆

Figure S53. ¹H NMR spectrum of 5c in CDCl₃

Figure S54. ¹³C NMR spectrum of 5c in CDCl₃

Figure S55. ¹H NMR spectrum of 5d in CDCl₃

Figure S56. ¹³C NMR spectrum of 5d in CDCl₃

Figure S58. ¹³C NMR spectrum of 5e in CDCl₃

Figure S60. ¹³C NMR spectrum of 5f in CDCl₃