Supporting Information

Shedding light on the photophysical properties of iridium(III) complexes with a dicyclometalated phosphate ligand via N-substitution from a theoretical viewpoint[†]

Xiaohong Shang,* a Deming Han, b Defeng Zhoua and Gang Zhang^c

 ^a College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P.R. China.
 E-mail: shangxiaohong58@aliyun.com ^b School of Life Science and Technology, Changchun University of Science and

Technology, Changchun 130022, P.R. China

^c Institute of Theoretical Chemistry, Jilin University, Changchun 130023, P.R. China

МО	Energy		Contrib	ution(%)		Assign
		Ir	P^{C_2}	P(OPh) ₃	N^N	
L+8	-0.40	0	5	95	0	$\pi^*(P(OPh)_3)$
L+7	-0.42	2	64	33	1	$\pi^{*}(P^{C_{2}} + P(OPh)_{3})$
L+6	-0.43	1	20	78	1	$\pi^{*}(P^{C_{2}+}P(OPh)_{3})$
L+5	-0.53	2	69	28	1	$\pi^*(\mathbf{P}^{C}\mathbf{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+4	-0.56	3	33	62	1	$\pi^*(\mathbf{P}^{C}\mathbf{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+3	-0.61	15	39	41	5	$d(Ir)+\pi^*(P^{C_2}+P(OPh)_3)$
L+2	-0.69	7	18	72	3	$\pi^*(P^{C}_2 + P(OPh)_3)$
L+1	-1.24	1	1	1	98	π *(N^N)
L	-1.87	2	1	1	95	π* (N^N)
Н	-6.47	22	73	2	3	$d(Ir)+\pi(P^{\wedge}C_2)$
H-1	-6.59	2	96	1	1	$\pi(P^{A}C_{2})$
H-2	-6.98	13	60	5	22	$d(Ir) + \pi(P^{C_2} + N^{N})$
H-3	-7.07	1	89	1	8	$\pi(P^{\wedge}C_2)$
H-4	-7.11	6	36	2	55	$\pi(P^{\wedge}C_{2}+N^{\wedge}N)$
H-5	-7.21	0	1	99	0	$\pi(P(OPh)_3)$
H-6	-7.24	0	1	97	1	$\pi(P(OPh)_3)$
H - 7	-7.49	0	99	0	1	$\pi(P^{\wedge}C_2)$
H-8	-7.57	0	1	98	1	$\pi(P(OPh)_3)$

Table S1 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 1

МО	Energy		Contrib	oution(%)		Assign
		Ir	P^C ₂	P(OPh) ₃	N^N	
L+8	-0.36	4	78	17	1	$\pi^*(\operatorname{P^{\wedge}C_2^+} P(\operatorname{OPh})_3)$
L+7	-0.39	0	5	94	0	$\pi^*(P(OPh)_3)$
L+6	-0.41	0	2	98	0	$\pi^*(P(OPh)_3)$
L+5	-0.49	2	76	21	1	$\pi^*(\operatorname{P^{\wedge}C_2^+} P(\operatorname{OPh})_3)$
L+4	-0.52	9	49	39	3	$\pi^*(\mathbf{P}^{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+3	-0.59	7	20	71	2	$\pi^*(\mathbf{P}^{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+2	-0.68	6	14	78	2	$\pi^*(P^{C}_2 + P(OPh)_3)$
L+1	-1.84	0	0	0	99	π *(N^N)
L	-2.27	3	1	1	95	π *(N^N)
Н	-6.47	19	77	2	3	$d(Ir) + \pi(P^{\land}C_2)$
H-1	-6.58	5	93	1	1	$\pi(P^{\wedge}C_2)$
H-2	-6.98	2	89	6	4	$\pi(P^{\wedge}C_2)$
H-3	-7.07	2	95	1	2	$\pi(P^{\wedge}C_2)$
H-4	-7.21	0	1	99	0	$\pi(P(OPh)_3)$
Н-5	-7.23	1	4	92	3	$\pi(P(OPh)_3)$
Н-6	-7.33	12	13	10	66	$\pi(N^N)$
H-7	-7.44	0	98	0	2	$\pi(P^{C_2})$
H-8	-7.57	0	1	98	0	$\pi(P(OPh)_3)$

Table S2 Frontier molecular orbital energies (eV) and compositions (%) in the groundstate for complex 1a

МО	Energy		Contrib	oution(%)		Assign
		Ir	P^C ₂	P(OPh) ₃	N^N	
L+8	-0.41	0	11	88	0	$\pi^{*}(P^{C_{2}}+P(OPh)_{3})$
L+7	-0.42	2	72	25	1	$\pi^{*}(P^{C_{2}}+P(OPh)_{3})$
L+6	-0.44	0	8	92	0	$\pi^*(P(OPh)_3)$
L+5	-0.53	1	85	13	0	$\pi^*(\mathbf{P}^{C}\mathbf{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+4	-0.57	3	13	83	1	$\pi^*(P(OPh)_3)$
L+3	-0.65	13	31	52	4	$d(Ir)+\pi^*(P^{C_2}+P(OPh)_3)$
L+2	-0.72	13	27	55	5	$d(Ir)+\pi^*(P^{C_2}+P(OPh)_3)$
L+1	-1.53	1	1	1	98	π* (N^N)
L	-2.30	2	1	1	96	π*(N^N)
Н	-6.53	21	76	2	2	$d(Ir) + \pi(P^{\land}C_2)$
H-1	-6.63	2	95	1	1	$\pi(P^{C_2})$
H-2	-7.04	1	90	7	3	$\pi(P^{C_2})$
H-3	-7.11	2	96	1	2	$\pi(P^{C_2})$
H-4	-7.23	0	1	99	0	$\pi(P(OPh)_3)$
H-5	-7.25	1	3	95	1	$\pi(P(OPh)_3)$
H-6	-7.37	13	13	8	66	$\pi(N^N)$
H-7	-7.51	0	99	0	1	$\pi(P^{A}C_{2})$
H-8	-7.59	0	2	98	0	$\pi(P(OPh)_3)$

Table S3 Frontier molecular orbital energies (eV) and compositions (%) in the groundstate for complex 1b

МО	Energy	Contribution(%)			Assign	
		Ir	P^C ₂	P(OPh) ₃	N^N	
L+8	-0.42	0	4	96	0	$\pi^*(P(OPh)_3)$
L+7	-0.44	1	41	58	0	$\pi^{*}(P^{C_{2}+}P(OPh)_{3})$
L+6	-0.45	1	47	51	1	$\pi^{*}(P^{C_{2}}+P(OPh)_{3})$
L+5	-0.55	1	81	18	0	$\pi^{*}(P^{C_{2}})$
L+4	-0.59	3	17	80	1	$\pi^*(P(OPh)_3)$
L+3	-0.67	12	27	58	4	$d(Ir)+\pi^*(P^{C_2}+P(OPh)_3)$
L+2	-0.74	16	32	46	6	$d(Ir)+\pi^*(P^{C_2}+P(OPh)_3)$
L+1	-1.57	0	1	1	98	π*(N^N)
L	-2.41	2	1	1	95	π* (N^N)
Н	-6.55	20	76	2	2	$d(Ir) + \pi(P^{\wedge}C_2)$
H-1	-6.64	3	95	1	1	$\pi(P^{A}C_{2})$
H-2	-7.04	2	84	7	8	$\pi(P^{A}C_{2})$
H-3	-7.12	2	94	1	3	$\pi(P^{A}C_{2})$
H-4	-7.23	2	4	80	15	$\pi(P(OPh)_3)$
H-5	-7.24	5	13	43	39	$\pi(P(OPh)_3 + N^N)$
H-6	-7.28	2	2	76	21	$\pi(P(OPh)_3 + N^N)$
H-7	-7.52	0	99	0	1	$\pi(P^{A}C_{2})$
H-8	-7.59	0	1	98	0	$\pi(P(OPh)_3)$

Table S4 Frontier molecular orbital energies (eV) and compositions (%) in the groundstate for complex 1c

MO	Energy		Contrib	ution(%)		Assign
		Ir	P^C ₂	P(OPh) ₃	N^N	
L+8	-0.42	0	3	96	0	$\pi^*(P(OPh)_3)$
L+7	-0.44	1	37	61	0	$\pi^*(\mathbf{P}^{C}\mathbf{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+6	-0.45	2	50	47	1	$\pi^*(\mathbf{P}^{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+5	-0.55	1	77	21	1	$\pi^*(\mathbf{P}^{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+4	-0.58	2	21	76	1	$\pi^*(\mathbf{P}^{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+3	-0.66	14	31	51	4	$d(Ir)+\pi^*(P^{\land}C_2+P(OPh)_3)$
L+2	-0.72	13	28	53	5	$\pi^*(\mathbf{P}^{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+1	-1.81	0	1	1	99	π* (N^N)
L	-2.08	2	1	1	96	π*(N^N)
Н	-6.52	21	75	2	2	$d(Ir) + \pi(P^{C_2})$
H-1	-6.63	3	96	1	1	$\pi(P^{\wedge}C_2)$
H-2	-7.03	1	88	6	4	$\pi(P^{\wedge}C_2)$
H-3	-7.11	2	95	1	2	$\pi(P^{\wedge}C_2)$
H-4	-7.23	0	1	99	1	$\pi(P(OPh)_3)$
H-5	-7.26	1	5	91	4	$\pi(P(OPh)_3)$
H-6	-7.34	11	11	11	67	$\pi(N^N)$
H - 7	-7.52	0	99	0	1	$\pi(P^{\wedge}C_2)$
H-8	-7.59	0	1	98	1	$\pi(P(OPh)_3)$

Table S5 Frontier molecular orbital energies (eV) and compositions (%) in the groundstate for complex 1d

МО	Energy		Contrib	ution(%)		Assign
		Ir	P^C ₂	P(OPh) ₃	N^N	
L+8	-0.37	4	51	44	2	$\pi^{*}(P^{C_{2}} + P(OPh)_{3})$
L+7	-0.39	2	27	71	0	$\pi^*(P^{C_2} + P(OPh)_3)$
L+6	-0.40	0	6	93	1	$\pi^*(P(OPh)_3)$
L+5	-0.50	7	53	37	3	$\pi^*(\mathbf{P}^{C}\mathbf{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+4	-0.52	6	76	16	2	$\pi^{*}(P^{C_{2}} + P(OPh)_{3})$
L+3	-0.56	7	24	66	3	$\pi^{*}(P^{C_{2}} + P(OPh)_{3})$
L+2	-0.66	3	10	85	2	$\pi^*(P(OPh)_3)$
L+1	-1.08	0	1	1	97	π* (N^N)
L	-1.69	2	2	1	95	π* (N^N)
Н	-6.36	20	69	4	7	$d(Ir)+\pi(P^{\wedge}C_2)$
H-1	-6.52	6	79	1	14	$\pi(P^{A}C_{2})$
H-2	-6.56	5	40	0	55	$\pi(P^{\wedge}C_2 + N^{\wedge}N)$
H-3	-6.96	1	93	4	2	$\pi(P^{A}C_{2})$
H-4	-7.01	2	95	1	2	$\pi(P^{A}C_{2})$
H-5	-7.18	0	1	99	0	$\pi(P(OPh)_3)$
H-6	-7.20	0	1	98	1	$\pi(P(OPh)_3)$
H - 7	-7.40	11	24	13	53	$\pi(P^{\wedge}C_2 + N^{\wedge}N)$
H-8	-7.47	1	93	2	4	$\pi(P^{C_2})$

Table S6 Frontier molecular orbital energies (eV) and compositions (%) in the groundstate for complex 2

МО	Energy		Contrib	ution(%)		Assign
		Ir	P^C_2	P(OPh) ₃	N^N	
L+8	-0.32	5	69	25	1	$\pi^{*}(P^{C_{2}}+P(OPh)_{3})$
L+7	-0.38	0	5	94	0	$\pi^*(P(OPh)_3)$
L+6	-0.39	0	3	97	0	$\pi^*(P(OPh)_3)$
L+5	-0.46	9	57	31	3	$\pi^{*}(P^{C_{2}}+P(OPh)_{3})$
L+4	-0.48	4	87	7	1	π*(P^C ₂)
L+3	-0.55	3	12	84	1	$\pi^*(P(OPh)_3)$
L+2	-0.65	3	8	87	1	$\pi^*(P(OPh)_3)$
L+1	-1.65	0	0	0	99	π*(N^N)
L	-2.11	2	1	1	95	π*(N^N)
Н	-6.38	20	68	2	10	$d(Ir) + \pi(P^{\wedge}C_2)$
H-1	-6.52	5	94	1	1	$\pi(P^{C_2})$
H-2	-6.71	7	19	2	72	$\pi(P^{\wedge}C_2 + N^{\wedge}N)$
H-3	-6.96	1	90	3	6	$\pi(P^{C_2})$
H-4	-7.02	3	93	1	3	$\pi(P^{C_2})$
H-5	-7.18	0	1	99	0	$\pi(P(OPh)_3)$
H-6	-7.20	0	1	99	0	$\pi(P(OPh)_3)$
H - 7	-7.41	0	98	0	1	$\pi(P^{\wedge}C_2)$
H-8	-7.50	9	22	29	40	$\pi(P^{\wedge}C_2 + P(OPh)_3 + N^{\wedge}N)$

Table S7 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 2a

MO	Energy		Contrib	oution(%)		Assign
		Ir	P^{C_2}	P(OPh) ₃	N^N	
L+8	-0.39	2	20	77	1	$\pi^*(\mathbf{P}^{C}\mathbf{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+7	-0.48	1	91	8	0	$\pi^*(P^C_2)$
L+6	-0.56	3	1	96	0	$\pi^*(P(OPh)_3)$
L+5	-0.57	2	2	96	0	$\pi^*(P(OPh)_3)$
L+4	-0.66	5	47	48	0	$\pi^*(\mathbf{P}^{C}_2 + \mathbf{P}(\mathbf{OPh})_3)$
L+3	-1.02	17	29	49	6	$d(Ir)+\pi^*(P^{\wedge}C_2 + P(OPh)_3)$
L+2	-1.34	21	39	29	11	$d(Ir)+\pi^*(P^{\wedge}C_2+P(OPh)_3+N^{\wedge}N)$
L+1	-1.62	1	1	1	97	π* (N^N)
L	-2.43	2	2	3	93	$\pi^*(N^N)$
Н	-6.57	22	74	1	3	$d(Ir)+\pi(P^{A}C_{2})$
H-1	-6.73	2	97	1	1	$\pi(P^{A}C_{2})$
H-2	-7.03	4	61	6	29	$\pi(P^{\wedge}C_2 + N^{\wedge}N)$
H-3	-7.15	6	49	4	42	$\pi(P^{\wedge}C_{2}+N^{\wedge}N)$
H-4	-7.21	2	57	38	3	$\pi(P^{A}C_{2}+P(OPh)_{3})$
H-5	-7.23	1	16	82	1	$\pi(P(OPh)_3)$
H-6	-7.25	1	15	75	9	$\pi(P(OPh)_3)$
H-7	-7.41	0	97	1	2	$\pi(P^{A}C_{2})$
H-8	-7.64	0	1	99	0	$\pi(P(OPh)_3)$

Table S8 Frontier molecular orbital energies (eV) and compositions (%) in the groundstate for complex 2b

МО	Energy		Contrib	oution(%)		Assign
		Ir	P^C ₂	P(OPh) ₃	N^N	
L+8	-0.40	1	23	76	1	$\pi^*(\mathbf{P}^{\mathbf{C}_2} + \mathbf{P}(\mathbf{OPh})_3)$
L+7	-0.41	2	53	44	1	$\pi^{*}(P^{C_{2}}+P(OPh)_{3})$
L+6	-0.43	1	13	85	1	$\pi^*(P(OPh)_3)$
L+5	-0.53	2	76	21	1	$\pi^{*}(P^{C_{2}}+P(OPh)_{3})$
L+4	-0.56	5	30	63	2	$\pi^{*}(P^{C_{2}}+P(OPh)_{3})$
L+3	-0.61	15	38	42	5	$d(Ir)+\pi^*(P^{\wedge}C_2+P(OPh)_3)$
L+2	-0.69	5	14	78	2	$\pi^*(P(OPh)_3)$
L+1	-1.39	0	1	1	98	π* (N^N)
L	-2.23	2	1	1	95	π* (N^N)
Н	-6.45	19	63	2	16	$d(Ir) + \pi(P^{C_2} + N^{N})$
H-1	-6.58	4	94	1	2	$\pi(P^{\wedge}C_2)$
H-2	-6.68	6	21	1	72	$\pi(P^{\wedge}C_2 + N^{\wedge}N)$
H-3	-7.01	1	92	5	3	$\pi(P^{\wedge}C_2)$
H-4	-7.07	2	95	1	2	$\pi(P^{\wedge}C_2)$
H-5	-7.21	0	1	99	0	$\pi(P(OPh)_3)$
H-6	-7.24	0	2	98	0	$\pi(P(OPh)_3)$
H - 7	-7.48	1	93	1	5	$\pi(P^{\wedge}C_2)$
H-8	-7.54	9	22	28	42	$\pi(P^{\wedge}C_2 + P(OPh)_3 + N^{\wedge}N)$

Table S9 Frontier molecular orbital energies (eV) and compositions (%) in the groundstate for complex 2c

МО	Energy		Contrib	oution(%)		Assign
		Ir	P^{C_2}	P(OPh) ₃	N^N	
L+8	-0.39	1	12	86	1	$\pi^*(P(OPh)_3)$
L+7	-0.41	3	63	34	1	$\pi^{*}(P^{C_{2}} + P(OPh)_{3})$
L+6	-0.42	1	12	87	1	$\pi^*(P(OPh)_3)$
L+5	-0.52	3	70	27	1	$\pi^{*}(P^{C_{2}+}P(OPh)_{3})$
L+4	-0.55	5	39	53	2	$\pi^{*}(P^{C_{2}+}P(OPh)_{3})$
L+3	-0.59	14	38	43	5	$d(Ir)+\pi^*(P^{C_2}+P(OPh)_3)$
L+2	-0.68	4	13	81	2	$\pi^*(P(OPh)_3)$
L+1	-1.64	0	1	1	99	π* (N^N)
L	-1.89	2	1	1	95	π* (N^N)
Н	-6.43	21	66	2	11	$d(Ir)+\pi(P^{C_2})$
H-1	-6.56	3	95	1	2	$\pi(P^{C_2})$
H-2	-6.72	7	18	1	74	$\pi(N^N)$
Н-3	-7.00	1	91	4	4	$\pi(P^{\wedge}C_2)$
H-4	-7.05	3	94	1	3	$\pi(P^{A}C_{2})$
H-5	-7.20	0	1	99	0	$\pi(P(OPh)_3)$
H-6	-7.23	0	1	98	0	$\pi(P(OPh)_3)$
H-7	-7.48	1	91	2	6	$\pi(P^{\wedge}C_2)$
H-8	-7.53	8	25	28	39	$\pi(P^{\wedge}C_2 + P(OPh)_3 + N^{\wedge}N)$

Table S10 Frontier molecular orbital energies (eV) and compositions (%) in the ground state for complex 2d

Table S11 Selected calculated wavelength (nm)/energies (eV), oscillator strength (f), major contribution and transition characters for **1-1d** in CH₂Cl₂ media, along with the experimental data for **1**

	state	λ/E	f	Configuration	Assignment	E (18
	state	N/L	J	Configuration	rssignment	Exptl."
1	S_1	326/3.79	0.022	H→L(85%)	$[d(Ir)+\pi(P^{C_2})\rightarrow\pi^*(N^N)]$ MLCT/LLCT	310
	S_3	288/4.30	0.125	H-2→L(55%)	$[d(Ir)+\pi(P^{C_2}+N^{N})\rightarrow\pi^*(N^{N})]$ MLCT/LLCT/ILCT	
	S_6	271/4.57	0.057	H-4→L (46%)	$[\pi(P^{C_2}+N^{N})\rightarrow\pi^*(N^{N})]$ LLCT/ILCT	
	S_{11}	251/4.94	0.081	H-7→L (59%)	$[\pi(P^{C_2}) \rightarrow \pi^*(N^{N})]$ LLCT/ILCT	
	S_{13}	247/5.01	0.073	H-2→L+1(53%)	$[\pi(P^{C_2}+N^{N})\rightarrow\pi^*(N^{N})]$ MLCT/LLCT/ILCT	
1a	\mathbf{S}_1	363/3.41	0.038	H→L(70%)	$[d(Ir)+\pi(P^{C_2})\rightarrow\pi^*(N^{N})]$ MLCT/LLCT/ILCT	
	S_7	293/4.21	0.059	H-6→L(58%)	$[\pi(N^N) \rightarrow \pi^*(N^N)]$ ILCT	
	S_{15}	263/4.70	0.085	H-6→L+1(61%)	$[\pi(N^N) \rightarrow \pi^*(N^N)]$ ILCT	
	S_{31}	239/5.17	0.110	H-8→L+2(54%)	$[\pi(P(OPh)_3) \rightarrow \pi^*(P^C_2 + P(OPh)_3)] LLCT/ILCT$	
1b	\mathbf{S}_1	359/3.44	0.017	H→L(80%)	$[d(Ir)+\pi(P^{C_2})\rightarrow\pi^*(N^N)]$ MLCT/LLCT	
	S_4	302/4.10	0.047	H-2→L (64%)	$[\pi(P^{\wedge}C_2) \rightarrow \pi^*(N^{\wedge}N)]$ LLCT	
	S_6	286/4.30	0.122	H-6→L (46%)	$[\pi(N^N) \rightarrow \pi^*(N^N)]$ ILCT	
	S_{15}	260/4.76	0.054	H-3→L+4 (57%)	$[\pi(P^{C_2}) \rightarrow \pi^*(P(OPh)_3)]$ LLCT	
1c	\mathbf{S}_1	369/3.35	0.025	H→L(74%)	$[d(Ir)+\pi(P^{C_2})\rightarrow\pi^*(N^{N})]$ MLCT/LLCT	
	S_3	315/3.93	0.081	H-2→L (48%)	$[\pi(P^{\wedge}C_2) \rightarrow \pi^*(N^{\wedge}N)]$ LLCT	
	S_{11}	272/4.54	0.090	H-8→L+2 (51%)	$[\pi(P(OPh)_3) \rightarrow d(Ir) + \pi^*(P^{C_2} + P(OPh)_3)]$ MLCT/LLCT/ILCT	
	S_{26}	246/5.03	0.057	H-5→L+5 (63%)	$[\pi(P(OPh)_3+N^N)\rightarrow\pi^*(P^C_2)]$ MLCT/LLCT	
1d	\mathbf{S}_1	340/3.64	0.021	H→L(81%)	$[d(Ir)+\pi(P^{C_2})\rightarrow\pi^*(N^N)]$ MLCT/LLCT	
	S_6	289/4.28	0.061	H-2→L (53%)	$[\pi(P^{\wedge}C_2) \rightarrow \pi^*(N^{\wedge}N)]$ LLCT	
	S_{10}	269/4.59	0.062	H-2→L+1 (58%)	$[\pi(P^{A}C_{2})\rightarrow\pi^{*}(N^{N})]$ LLCT	
	S_{38}	230/5.37	0.107	H-2→L+3 (43%)	$[\pi(P^{C_2}) \rightarrow d(Ir) + \pi^*(P^{C_2} + P(OPh)_3)]$ MLCT/LLCT/ILCT	
	ат	D.f. 11				

^a Ref. 11.

Table S12 Selected calculated wavelength (nm)/energies (eV), oscillator strength (f), major contribution and transition characters for **2-2d** in CH₂Cl₂ media, along with the experimental data for **2**

	state	λ/Ε	f	Configuration	Assignment	Exptl. ^a
2	S_1	322/3.84	0.034	H→L(91%)	$[d(Ir)+\pi(P^{C_2})\rightarrow\pi^*(N^{N})]MLCT/LLCT$	322
	S_2	307/4.02	0.099	H-1→L (74%)	$[\pi(P^{\wedge}C_2) \rightarrow \pi^*(N^{\wedge}N)] LLCT$	
	S_4	273/4.52	0.109	H→L+1(83%)	$[d(Ir)+\pi(P^{C}_{2}+N^{N})\rightarrow\pi^{*}(N^{N})] MLCT/LLCT/ILCT$	
	S_{10}	255/4.85	0.051	H-7→L (45%)	$[\pi(P^{C_2}+N^{N})\rightarrow\pi^*(N^{N})]$ LLCT/ILCT	
2a	\mathbf{S}_1	358/3.45	0.029	H→L(82%)	$[d(Ir)+\pi(P^{C_2})\rightarrow\pi^*(N^{N})]$ MLCT/LLCT	
	S_8	287/4.30	0.103	H-2→L+1(73%)	$[\pi(P^{\wedge}C_{2}+N^{\wedge}N)\rightarrow\pi^{*}(N^{\wedge}N)] LLCT/ILCT$	
	S_{12}	271/4.56	0.065	H-8→L (48%)	$[\pi(P^{\wedge}C_2 + P(OPh)_3 + N^{\wedge}N) \rightarrow \pi^*(N^{\wedge}N)] LLCT/ILCT$	
	S ₂₉	242/5.10	0.147	H-1→L+4(60%)	$[\pi(P^{\wedge}C_2) \rightarrow \pi^*(P^{\wedge}C_2)] \text{ ILCT}$	
2b	S_1	371/3.33	0.018	H→L(89%)	$[d(Ir)+\pi(P^{\wedge}C_2) \rightarrow \pi^*(N^{\wedge}N)] MLCT/LLCT$	
	S_3	321/3.85	0.113	H-2→L (64%)	$[\pi(P^{C_2}+N^{N})\rightarrow\pi^*(N^{N})]$ LLCT/ILCT	
	S ₁₉	264/4.69	0.055	H-2→L+2(45%)	$[\pi(P^{C_2}+N^{N})\rightarrow d(Ir)+\pi^*(P^{C_2}+P(OPh)_3+N^{N})] MLCT/LLCT/ILCT$	
	S ₃₉	237/5.22	0.061	H-7→L+2 (43%)	$[\pi(P^{C_2}) \rightarrow d(Ir) + \pi^*(P^{C_2} + P(OPh)_3 + N^{N})] MLCT/LLCT/ILCT$	
2c	S_1	365/3.39	0.026	H→L(86%)	$[d(Ir)+\pi(P^{C_{2}}+N^{N})\rightarrow\pi^{*}(N^{N})] MLCT/LLCT/ILCT$	
	S_3	333/3.71	0.080	H-2→L (70%)	$[\pi(P^{C_2}+N^{N})\rightarrow\pi^*(N^{N})]$ LLCT/ILCT	
	S_7	286/4.32	0.059	H→L+1 (77%)	$[d(Ir)+\pi(P^{C}_{2}+N^{N})\rightarrow\pi^{*}(N^{N})] MLCT/LLCT/ILCT$	
	S ₉	279/4.43	0.049	H-5→L (33%)	$[\pi(P(OPh)_3) \rightarrow \pi^*(N^N)] LLCT$	
2d	S_1	334/3.71	0.020	H→L(88%)	$[d(Ir)+\pi(P^{\wedge}C_2) \rightarrow \pi^*(N^{\wedge}N)] MLCT/LLCT$	
	S_4	302/4.09	0.087	H-2→L (44%)	$[\pi(N^N) \rightarrow \pi^*(N^N)]$ ILCT	
	S_5	294/4.20	0.092	H-1→L+1 (58%)	$[\pi(P^{A}C_{2})\rightarrow\pi^{*}(N^{A}N)]$ LLCT	
	S ₁₆	257/4.81	0.117	H-8→L (51%)	$[\pi(P^{\wedge}C_2 + P(OPh)_3 + N^{\wedge}N) \rightarrow \pi^*(N^{\wedge}N)] LLCT/ILCT$	

^a Ref. 11.

Table S13 The plots of the hole and virtual natural transition orbitals (NTOs) correspond to electronic transitions from the ground state to the singlet excited states S_1 for all the studied complexes

Complexes Hole		Virtual	Complexes	Hole	Virtual
1			2		
1a			2a		3
1b			2b		
1c			2c		- Contraction of the second se
1d		200	2d		S.

Table S14 Calculated phosphorescent emission wavelength (λ , in nm) for **1** and **2** in CH₂Cl₂ media with the TDDFT method at M062X, M052X, BP86 and PBE0 level, respectively, together with the experimental values

	M062X	M052X	BP86	PBE0	Exptl. ^a
1	464	489	533	531	458
2	493	509	537	551	492

^a Ref. 11.

Table S15 Frontier molecular orbital energies (eV) and composition (%) of **1-6d** and **2-2d** in the lowest lying triplet excited state (L and H represent the LUMO and HOMO, respectively)

	MO	Ε		MO comp	osition(%)		Assign
1			Ir	P^{C_2}	P(OPh) ₃	N^N	
	L	-2.26	2	1	1	96	- π*(N^N)
	Н	-6.41	22	62	2	15	$d(Ir)+\pi(P^{\wedge}C_{2}+N^{\wedge}N)$
	H - 2	-6.73	4	18	0	77	$\pi(N^N)$
1 a			Ir	P^{C_2}	P(OPh) ₃	N^N	
	L	-2.74	4	2	2	92	- π*(N^N)
	Н	-6.03	26	48	1	25	$d(Ir)+\pi(P^{\wedge}C_{2}+N^{\wedge}N)$
1b			Ir	P^{C_2}	P(OPh) ₃	N^N	
	L	-2.70	2	1	1	95	_ π* (N^N)
	Н	-6.05	26	69	2	4	$d(Ir) + \pi(P^{\wedge}C_2)$
	H-1	-6.54	19	9	17	54	$d(Ir)+\pi(P(OPh)_3+N^N)$
1c			Ir	P^{C_2}	P(OPh) ₃	N^N	
	L	-2.72	3	1	1	95	_ π* (N^N)
	Н	-6.49	21	69	2	9	$d(Ir) + \pi(P^{\wedge}C_2)$
	H-2	-6.92	4	24	1	71	$\pi(P^{\wedge}C_2 + N^{\wedge}N)$
1d			Ir	P^C_2	P(OPh) ₃	N^N	

	L	-2.52	2	1	1	95	π* (N^N)
	Н	-6.40	24	49	1	26	$d(Ir)+\pi(P^{\wedge}C_{2}+N^{\wedge}N)$
2			Ir	$P^{A}C_{2}$	P(OPh) ₃	N^N	
	L	-1.97	2	1	1	95	π*(N^N)
	Н	-6.11	8	10	1	81	$\pi(N^N)$
2a			Ir	P^{C_2}	P(OPh) ₃	N^N	
	L	-2.30	3	2	1	94	_ π*(N^N)
	Н	-6.23	18	37	2	43	$d(Ir)+\pi(P^{\wedge}C_{2}+N^{\wedge}N)$
2b			Ir	P^{C_2}	P(OPh) ₃	N^N	
	L	-2.68	3	2	3	93	_ π*(N^N)
	Н	-6.50	23	63	2	12	$d(Ir)+\pi(P^{\wedge}C_2)$
	H-1	-6.72	4	96	0	0	$\pi(P^{A}C_{2})$
2c			Ir	P^{C_2}	P(OPh) ₃	N^N	
	L	-2.47	3	1	1	95	_ π*(N^N)
	Н	-6.26	11	18	1	70	$d(Ir)+\pi(P^{C_2}+N^{N})$
2d			Ir	P^{C_2}	P(OPh) ₃	N^N	
	L	-2.15	2	1	1	95	_ π*(N^N)
	Н	-6.28	15	28	2	55	$d(Ir) + \pi(P^{C_2} + N^{N})$

Table S16 The xyz coordinates for the optimized structures for 1 in the S_0 and T_1 states at PBE0/6-31G* level

		So			T ₁	
Ir	-0 19286700	-1 13309500	-0.03083700	0 22391100	-1 14477900	0 02720800
Р	1.95853000	-1.55987500	-0.18215900	-1.92172500	-1.60963700	0.17733300
P	-0.03981300	1 17030400	0.08384300	0.01408000	1 16946500	-0.08881700
0	2 45154000	-1 24948600	-1 68877700	-2 41635900	-1 31644200	1 68648400
Ő	2 18358700	-3 15201400	0.02163300	-2 11904600	-3 20333700	-0.03648100
$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	3 09654000	-0.92172500	0.73561800	-3 07171700	-0.98377900	-0 73340300
$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	0.08453200	1 77226300	1 58523000	-0.15817100	1 77133000	-1 58378100
	-1 28351300	1.96553700	-0 57495600	1 25/18/1300	1 99092800	0 5/376600
	1 26986700	1.76937900	-0.57495000	-1 29300900	1 71107700	0.54570000
N	-0.61572800	-1 34469000	2 08723700	0.62764000	-1 30381500	-2 07130800
N	-2 27529300	-1.07293600	0.06165200	2 20185200	-1.03388700	-2.07150800
N	3 26551000	-1.07273000	0.81300100	2.27105200	-1.05588700	0.81844400
	-3.20331000	-0.92873200	-0.81300100	3.20830300	-0.88734700	1 24720200
	-4.14000100	-1.1818/400	2.06268400	4.21087900	-1.00300900	-1.24/39200
	1 22001200	-1.44910900	2 76126200	-0.22908300	-1.39314300	-3.00210100
	0.06176000	-1.39291400	2.70120300	-1.28009100	-1.38237000	-2.79483300
	-0.001/0000	-1.00955000	4.39110400	0.14340100	-1.30074300	-4.41212600
	0.71280300	-1.08955500	5.14590700	-0.03109700	-1.5/0/5500	-3.10441900
	-1.40992400	-1.00214000	4.72023100	1.33209200	-1.3122/600	-4./0392400
П	-1./1/92300	-1./88/3000	3.73823000	1.83210000	-1.00003400	-3.80333700
	-2.33033800	-1.54489500	3.72251800	2.44958200	-1.40886500	-3.//003800
Н	-3.42000000	-1.5/134/00	3.92690300	3.51621900	-1.40519000	-3.9/035100
C	-1.925/8900	-1.38438500	2.41183000	2.01840900	-1.29193100	-2.40533200
C	-2.81654600	-1.22483600	1.281/6/00	2.852///00	-1.14442600	-1.32358600
C	-4.35891000	-1.00026200	-0.05942800	4.38511400	-0.91231200	0.051/8300
C	-5./302/300	-0.8/019200	-0.62914600	5./4619800	-0./61/4800	0.65809800
C	1.38546800	-1.05285500	-2.5/8/4500	-1.35542800	-1.10329300	2.57770800
C	0.0817/100	-0.97/15600	-2.07260300	-0.05156500	-1.00363800	2.0/284/00
C	-0.92579200	-0.77/02800	-3.01830800	0.94867900	-0.78875100	3.02502300
H	-1.95460200	-0.71316600	-2.67915900	1.977/5100	-0.70532700	2.69239800
C	-0.6389/000	-0.65630100	-4.37763500	0.65619100	-0.67672300	4.38365600
H	-1.44949200	-0.50031300	-5.08354000	1.46185500	-0.50886200	5.09236400
C	0.67269800	-0.73624400	-4.83147300	-0.65519400	-0.78015000	4.83334000
H	0.89884000	-0.64334100	-5.88899000	-0.88620300	-0.69399100	5.89035600
C	1.70348200	-0.93963200	-3.92081200	-1.67947100	-0.99883000	3.91869200
H	2.73861700	-1.01082200	-4.23772500	-2.71414500	-1.08860900	4.23228400
C	0.99992200	-3.89268500	-0.11869500	-0.92145000	-3.92379400	0.08705200
C	-0.22122600	-3.21323200	-0.19156700	0.28824000	-3.22390700	0.16054800
C	-1.35116600	-4.01749800	-0.35080600	1.43263200	-4.01115100	0.29974700
H	-2.32723600	-3.55251400	-0.44247200	2.40171500	-3.53168600	0.38973800
C	-1.26309200	-5.40746300	-0.40645900	1.36951000	-5.40291800	0.33718600
H	-2.16549700	-5.99919100	-0.52838300	2.28322500	-5.98009600	0.44329100
C	-0.02689400	-6.03506800	-0.31221800	0.14371200	-6.05061800	0.24486600
H	0.04764000	-7.11706800	-0.35577800	0.08801600	-7.13416500	0.27508200
C	1.12584800	-5.26982300	-0.17230600	-1.02285400	-5.30338300	0.12389800
H	2.10780200	-5.72712800	-0.11006700	-1.99732700	-5.77655400	0.06290800
C	4.47653400	-1.08368200	0.54972200	-4.44876500	-1.16947500	-0.54698400
C	5.10703800	-2.20734300	1.05939200	-5.06189000	-2.29783000	-1.06727300
H	4.52605200	-2.97688000	1.55435600	-4.46942200	-3.05288300	-1.57085600
C	6.48590700	-2.31794000	0.91608800	-6.43868300	-2.43156900	-0.92381200
H	6.99382500	-3.19259500	1.30887900	-6.93317200	-3.31009700	-1.32499200
C	7.20953300	-1.31633300	0.27775100	-7.17736200	-1.44782300	-0.27501700
Η	8.28521600	-1.40848900	0.17029600	-8.25137700	-1.55787500	-0.16773500
C	6.55367600	-0.19580800	-0.22173400	-6.53878900	-0.32204200	0.23491900

Η	7.11411400	0.58851300	-0.71977100	-7.11104200	0.44849900	0.74096600
C	5.17541600	-0.07170100	-0.08826900	-5.16277800	-0.17489600	0.10154500
Н	4.64354600	0.79271800	-0.46981100	-4.64424600	0.69406600	0.49103500
C	0.94321800	2.76051100	2.05253600	-1.05264900	2.73773600	-2.03036100
C	2.27861200	2.44835600	2.27125900	-2.37994100	2.38544900	-2.23633200
Н	2.64637500	1.45508400	2.03620900	-2.71170900	1.37768900	-2.01002500
C	3.12342500	3.42594300	2.78428800	-3.26244500	3.34149800	-2.72582300
Н	4.16951600	3.19127800	2.95281300	-4.30241700	3.07496700	-2.88446900
C	2.63296500	4.69373000	3.08156400	-2.81719700	4.62831800	-3.01227500
Н	3.29591600	5.45330100	3.48259500	-3.50942200	5.37113800	-3.39477500
C	1.28889200	4.98217200	2.86896700	-1.48041000	4.95713800	-2.81304200
Н	0.89819100	5.96679100	3.10464100	-1.12443200	5.95666500	-3.04084300
C	0.43315300	4.01520700	2.35174600	-0.58707900	4.01188800	-2.31978000
Н	-0.61658100	4.22574900	2.17876200	0.45759400	4.25438100	-2.15885200
C	-1.93888500	3.10241400	-0.11527500	1.86305300	3.15419200	0.08368500
C	-2.88463900	2.97275800	0.89270000	2.75646300	3.07535900	-0.97602000
Н	-3.08014700	1.99916300	1.32920900	2.94415700	2.12159500	-1.45691000
C	-3.57192600	4.10218200	1.32210700	3.39950100	4.23131100	-1.40353700
Н	-4.31105400	4.00836300	2.11102200	4.09712500	4.17707100	-2.23290800
C	-3.31960100	5.34121800	0.74163700	3.15540300	5.44613900	-0.77091900
Η	-3.85936600	6.21999300	1.07880800	3.66069800	6.34564000	-1.10679400
C	-2.38106700	5.44749400	-0.27937800	2.26860900	5.50171500	0.29925000
Η	-2.18639000	6.40873700	-0.74393200	2.08013100	6.44402800	0.80342800
C	-1.68338600	4.32646100	-0.71599100	1.61544700	4.35382700	0.73493100
Η	-0.95069900	4.39555200	-1.51203700	0.92318100	4.38309200	1.56878500
C	1.36333600	2.81935800	-1.55574300	-1.39603800	2.77737500	1.58543500
C	0.87664600	2.67859100	-2.84781300	-0.88946400	2.64196800	2.87035900
Η	0.39789700	1.75155400	-3.14622600	-0.39030000	1.72277600	3.15950100
C	1.01501900	3.74029500	-3.73461900	-1.03569400	3.69830100	3.76237600
Η	0.63364800	3.64155800	-4.74580300	-0.63919400	3.60382300	4.76813600
C	1.63838200	4.91782500	-3.33262900	-1.68641700	4.86500800	3.37233500
Η	1.74352700	5.74281100	-4.02959100	-1.79763600	5.68593700	4.07313200
C	2.13159200	5.03222900	-2.03692300	-2.19973200	4.97354200	2.08394800
Η	2.62362700	5.94565800	-1.71866600	-2.71362400	5.87821000	1.77538000
C	1.99607000	3.98054800	-1.13678900	-2.05704100	3.92711600	1.17887300
Η	2.36869500	4.05455000	-0.12103000	-2.44595500	3.99662400	0.16894100
F	-6.38151900	0.18499500	-0.11038700	6.37099600	0.32164700	0.17509300
F	-6.48247700	-1.95091600	-0.36221500	6.52100800	-1.81864600	0.37734600
F	-5.70457200	-0.71462400	-1.95442000	5.68694600	-0.64024600	1.98401800

Table S17 The xyz coordinates for the optimized structures for 2 in the S_0 and T_1 states at PBE0/6-31G* level

		So			T ₁	
Ir	0.18083800	-1.12472000	0.02024900	0.22362100	-1.13608700	0.02489300
Р	-1.96883000	-1.56313500	0.17180100	-1.92006300	-1.61230700	0.17287200
P	0.02684700	1 17587400	-0.07135800	0.00447600	1 17252200	-0.08777800
0	-2 46173500	-1 26871800	1 68357200	-2 41796500	-1 32898300	1 68431300
Ő	-2.18689900	-3 15686800	-0.04011600	-2 11023200	-3 20799600	-0.04347600
0	-3 12000400	-0 92834600	-0 73466100	-3 08144300	-0 99377700	-0 73133400
ŏ	-0.08651300	1 79136000	-1 56925600	-0 16625200	1 78359700	-1 58016700
0	1 25899200	1 97641500	0.60548600	1 23865800	2 00345600	0.55095500
$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	-1 28711400	1 75244200	0.68325800	-1 30557800	1 71208200	0.69984700
N	0.60234600	-1 30445400	-2 09812700	0.63161700	-1 28832000	-2 07601300
N	2 26045400	-1 06178400	-0.06992700	2 28439700	-1 02094000	-0.04109200
N	3 25753100	-0.94899800	0.80992400	3 26212700	-0.88761800	0.81775400
N	4 13388900	-1.16562000	-1 25130900	4 20192000	-1.05329700	-1 25290600
C	-0.30453400	-1 39356500	-3.07652700	-0 24064900	-1 38284500	-3.06592200
н	-1 34343500	-1 34580900	-2 77373700	-1 28838000	-1.37282500	-2 78400400
$\begin{bmatrix} \Pi \\ C \end{bmatrix}$	0.04958100	-1 52829100	-4 40701700	0.11774400	-1 48403000	-4 40863600
	0.04930100	1 59687100	5 16213500	0.11774400	1 56126300	5 15732000
	1 30070100	-1.57037100	-3.10213300	1 /0965/00	-1.48633200	-1 76739800
	1.70027200	1 67785000	5 77457000	1.70804700	1 56878000	5 80623300
	2 34425600	-1.07783900	-3.77437000	2 42548600	1 37044000	-3.80023300
	2.34423000	-1.40872500	-3.75475200	2.42348000	-1.3/944900	-3.77732800
	1 01/28500	-1.488525000	-3.93704900	2 00760700	-1.3089/300	-3.98228300
	2 80226700	-1.33233900	-2.41803700	2.00700700	-1.27090700	-2.41463000
	2.80330700	-1.19410100	-1.28/30300	2.83327300	-1.12823300	-1.33081100
	4.30938300	-1.013/1200	0.00938800	4.40003300	-0.91033000	0.03327200
	1 20444600	-0.91850000	0.04203900	1 25862700	-0.77494700	2 57674600
	-1.39444000	-1.0/30/000	2.37224300	-1.55805700	-1.11113900	2.37074000
	-0.09199800	-0.98983000	2.00382900	-0.03318000	-1.00312700	2.07527000
	1.04204100	-0.79307400	2 66051800	0.94192300	-0.78412900	2 60205800
	0.62277000	-0.72027900	4 26882000	1.97030300	-0.09340400	2.09293800
	1 44525200	-0.08138700	4.30883000	1 45120000	-0.07313200	5.00646200
	1.44323200	-0.32/09400	3.07433000	1.43139900	-0.30300100	3.09040200
	-0.07073400	-0.70832200	4.82342300	-0.00370800	-0.78032900	4.83432800
	-0.90074300	-0.08248800	3.88409400	-0.89083300	-0.70248300	3.69133900
	-1.70927700	-0.90977900	<i>J</i> .91007800	-1.08311000	-1.01001200	<i>4</i> 22001000
	-2.74551900	-1.04033900	4.25557500	-2./1981000	-1.103/9000	4.22991000
	-0.99821000	-3.89120800	0.08887300	-0.90887800	-3.92170200	0.07739000
	0.2194/000	-5.20552600	0.100/0900	0.29709900	-3.21344900	0.13218300
	1.55524100	-4.00539000	0.30800200	2 41162000	-3.99700900	0.28823900
	2.32743400	-3.32988000	0.39822300	2.41108000	-3.31220900	0.37788900
	2 18101200	-5.59450000	0.33497000	2 20666100	-3.38999300	0.32223700
	2.18191300	-5.98212800	0.40821900	2.30000100	-5.90285500	0.42321200
	0.04238700	-0.02902700	0.20213300	0.10/34300	-0.04410100	0.22923900
	-0.02332800	-7.11101700	0.29830800	1.00280200	-7.12800700	0.23034000
	-1.11343400	-3.20974200	0.13314400	-1.00289300	-3.30223800	0.11083100
	-2.09480400	-3.73282800	0.07221000	-1.97300700	-3.78028300	0.04887400
	-4.49033800	-1.10429200	-0.34418900	-4.43430300	-1.19003000	-0.34169200
	-3.110/0300	-2.23440900 2 00022100	-1.03020100	-3.03/43100	-2.32/03000	-1.00/39400 1 57760000
	-4.33213900	-2.99932100	-1.34388/00	-4.43009/00	-3.0/2/0100	-1.3//09800
	-0.49000000 6 00674000	-2.33001400	-0.2020000	6.01706400	-2.4//00/00	-0.72008700 1.22627000
	-0.770/4000 7 77720000	-3.23003400	-1.2920/200		-3.33928100	-1.52027000
	-1.22/30000 8 30185000	-1.30240300	-0.20334400 0.15276700	8 25242400	-1.30064200	-0.20329100
	-0.30103000	-1.40403800	-0.132/0/00	6 55227500	-1.02301700 0.37720100	-0.13332200
	-0.50052000	-0.2330/100	0.23217100	-0.55257500	-0.5//2/100	0.23100/00

Н	-7.14683600	0.54479500	0.73065500	-7.13165900	0.38362100	0.76454000
С	-5.20392200	-0.09829700	0.09429500	-5.17852800	-0.21395400	0.11523700
Н	-4.67910500	0.77183700	0.47267600	-4.66864400	0.65837900	0.50861200
С	-0.93937700	2.78283200	-2.03714500	-1.06653400	2.74358400	-2.02541000
С	-2.27579600	2.47746600	-2.26022100	-2.39244400	2.38469200	-2.22992100
Η	-2.64910900	1.48583600	-2.02684900	-2.71853000	1.37505100	-2.00370400
С	-3.11434200	3.45930900	-2.77541000	-3.28059000	3.33616500	-2.71805600
Н	-4.16100900	3.22966400	-2.94735800	-4.31929000	3.06397900	-2.87561100
С	-2.61698900	4.72484300	-3.07089000	-2.84277400	4.62548900	-3.00489100
Η	-3.27504900	5.48763900	-3.47389600	-3.53946400	5.36462100	-3.38650000
С	-1.27217700	5.00675300	-2.85401000	-1.50743700	4.96124000	-2.80739800
Η	-0.87605400	5.98957200	-3.08827200	-1.15699800	5.96266400	-3.03564800
С	-0.42281700	4.03551100	-2.33442600	-0.60861700	4.02055600	-2.31548400
Η	0.62736700	4.24073400	-2.15772700	0.43503200	4.26835500	-2.15587600
С	1.93684700	3.09496600	0.13897400	1.85002200	3.16133600	0.08618100
С	2.88638600	2.94109900	-0.86231400	2.74045200	3.07773800	-0.97618400
Η	3.06652700	1.96036700	-1.28974200	2.92120800	2.12284400	-1.45758300
С	3.59544400	4.05552900	-1.29607400	3.38717900	4.23058800	-1.40703700
Η	4.33703100	3.94314300	-2.08033200	4.08110600	4.17250300	-2.23931400
С	3.36091700	5.30336600	-0.72675800	3.15037300	5.44738600	-0.77522900
Η	3.91754900	6.17017300	-1.06757100	3.65822000	6.34437900	-1.11402200
С	2.41748700	5.43391000	0.28701500	2.26626100	5.50814300	0.29691600
Η	2.23581500	6.40228600	0.74201800	2.08249800	6.45213500	0.79977600
С	1.69798100	4.32832700	0.72760200	1.60920400	4.36359100	0.73557900
Η	0.95980500	4.41526600	1.51701300	0.91789800	4.39681700	1.57018300
С	-1.37703100	2.82193600	1.56662200	-1.40824000	2.77745900	1.58639700
С	-0.89930400	2.67505800	2.86156100	-0.90445200	2.64058400	2.87248200
Η	-0.43039400	1.74315500	3.16071200	-0.40831900	1.71972000	3.16173700
С	-1.03426900	3.73593100	3.74974800	-1.05052000	3.69636600	3.76513600
Η	-0.66012100	3.63190700	4.76313600	-0.65650200	3.60016200	4.77176000
С	-1.64526800	4.91961000	3.34655200	-1.69830000	4.86474600	3.37499200
Η	-1.74793800	5.74397000	4.04466700	-1.80951800	5.68524700	4.07633800
С	-2.12931000	5.04076200	2.04807500	-2.20902000	4.97511000	2.08574500
Η	-2.61173200	5.95892600	1.72862100	-2.72090900	5.88087200	1.77694200
С	-1.99699700	3.98971800	1.14660900	-2.06647900	3.92909800	1.18013300
Η	-2.36295600	4.06915100	0.12884500	-2.45365100	4.00018700	0.16964000
С	6.45873100	0.30673900	0.03899300	6.43142700	0.48194600	0.06901000
Η	5.93241600	1.22942200	0.30237100	5.86895300	1.38296200	0.33072400
Η	7.48472900	0.38294100	0.41345700	7.44525200	0.58714100	0.46677800
Η	6.49564900	0.23691000	-1.05098700	6.49049700	0.41908500	-1.01953600
С	6.54082400	-2.18177200	0.26019000	6.59773600	-2.00890500	0.26520800
Η	7.56950200	-2.12079000	0.63001600	7.61444700	-1.91341600	0.65789000
Η	6.07873100	-3.07529200	0.69113200	6.16031700	-2.92358100	0.67590400
Η	6.57271800	-2.30716600	-0.82474300	6.65326100	-2.11387600	-0.82010200
С	5.71333600	-0.78395800	2.16213500	5.70043600	-0.65895300	2.17808200
Η	5.16656000	0.11158700	2.46776100	5.12301400	0.21544100	2.48719200
Η	5.22576800	-1.64580200	2.62493300	5.23822600	-1.54150300	2.62683200
Н	6.73090500	-0.71391100	2.55897300	6.71117800	-0.56021400	2.58442900