Electronic Supplementary Information (ESI) for

Phosphovanadomolybdic acid catalyzed direct C–H trifluoromethylation of (hetero)arenes using NaSO₂CF₃ as the CF₃ source and O₂ as the terminal oxidant

Chifeng Li, Kosuke Suzuki, Kazuya Yamaguchi* and Noritaka Mizuno*

Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

General: Benzene (Kanto Chemical), toluene (Kanto Chemical), naphthalene (Wako), anisole 1,4-dimethoxybenzene (TCI), 1,2-dichlorobenzene (TCI), (Kanto Chemical), 1,4-dichlorobenzene benzonitrile (TCI), (Kanto Chemical), pyrazine (TCI), 3,5-dichloropyridine (TCI), quinoline (TCI), dibenzothiophene (TCI), sodium trifluromethanesulfinate (TCI), ethyl acetate (Kanto Chemical), dimethyl sulfoxide (Kanto Chemical), N,N-dimethylformamide (Kanto Chemical), 1,2-dichloroethane (Kanto Chemical), ethanol (Kanto Chemical), N-methylpyrrolidone (Kanto Chemical), and acetonitrile (Kanto Chemical) were used as received. H₃PW₁₂O₄₀, H₄SiW₁₂O₄₀, H₃PMo₁₂O₄₀, and H₄SiMo₁₂O₄₀ were obtained from Wako, and other heteropoly acids were obtained from Nippon Inorganic Colour & Chemical. The numbers of water of crystallization in heteropoly acids were 20-30 per molecule, and the molecular weights of heteropoly acids were calculated as triacontahydrates. UV/Vis spectra were measured on Jasco V-570 with a quartz cell of 1 cm path length. GC analyses were performed on Shimadzu GC-2014 with a FID detector equipped with an InertCap 1, InertCAP FFAP, and Stabilwax capillary column. GCMS spectra were recorded on Shimadzu GCMS-QP2010 at an ionization voltage of 70 eV equipped with an InertCap 5MS/Sil capillary column. NMR spectra were recorded on JEOL ECA-500 (¹H, 500.0 MHz; ¹⁹F, 470.6 MHz) by using 5 mm tubes. Chemical shifts were reported on the δ scale with resonances upfield of TMS ($\delta = 0$ ppm) for ¹H NMR spectra and trifluoroacetic acid ($\delta = -76.55$ ppm) for ¹⁹F NMR spectra.

Typical procedure for aerobic trifluoromethylation: Substrate (0.2 mmol), CF_3SO_2Na (0.6 mmol), $H_6PV_3Mo_9O_{40}$ (20 µmol, 10 mol% with respect to substrate), acetonitrile

(1.6 mL), and water (0.4 mL) were placed into a pyrex-glass screw-cap vial with a magnetic stir bar. Then, the reaction mixture was vigorously stirred at 120 °C (bath temperature) in 1 atm of O_2 for 6 h or 23 h. After the reaction, biphenyl (internal standard for GC analysis) was added to the reaction solution as an internal standard. The products were confirmed by GC-MS, ¹⁹F NMR, and/or ¹H NMR, and the yields of products were determined by GC.

Compound data:

CF₃

Trifluoromethylbenzene^{S1} (Fig. 1, Entry 1): 65% yield (based on NaSO₂CF₃). ¹⁹F NMR (470.6 MHz, CD₃CN) δ –62.5 (s) ppm. MS (EI) *m/z* (%): 146 (100) [*M*]⁺, 145 (48), 127 (49), 96 (47), 77 (20), 75 (14), 69 (15), 51 (36), 50 (25).

Trifluoromethylnaphthalene,⁸² **mixture of isomers (Fig. 1, Entry 2):** 55% yield (based on NaSO₂CF₃; C1:C2 = 4.8:1.0). ¹⁹F NMR (470.6 MHz, CD₃CN) δ –59.6 (s, C1), –62.0 (s, C2) ppm. MS (EI) *m/z* (%): 196 (100) [*M*]⁺, 197 (13), 195 (27), 177 (15), 146 (41).

(Trifluoromethyl)toluene,^{S3} mixture of isomers (Fig. 1, Entry 3): 92% yield (based on CF₃SO₂Na; C2:C3:C4 = 2.8:1.4:1.0). ¹⁹F NMR (470.6 MHz, CD₃CN) δ -61.4 (s, C2), -62.0 (s, C3), -62.4 (s, C4) ppm. MS (EI) *m/z* (%): 160 (52) [*M*]⁺, 140 (11), 109 (10), 91 (100).

Trifluoromethylanisole,⁸⁴ **mixture of isomers (Fig. 1, Entry 4):** 65% yield (61/4 mono-CF₃/bis-CF₃; isomer ratio of mono-CF₃, C2:C3:C4 = 2.7:1.0:1.2). ¹⁹F NMR (470.6 MHz, CD₃CN) δ -62.1 (s, C2), -62.5 (s, C3), -61.2 (s, C4), -60.6 (s, bis-CF₃), -61.6 (s,

bis-CF₃), -62.8 (s, bis-CF₃), -63.0 (s, bis-CF₃), -63.2 (s, bis-CF₃) ppm. MS (EI) *m/z* (%): mono-CF₃, 176 (100) [*M*]⁺, 146 (23), 145 (25), 133 (34), 127 (30), 126 (10), 114 (33), 109 (16), 96 (16), 83 (24), 77 (10), 75 (16), 63 (27), 57 (13), 50 (15); bis-CF₃, 244 (100) [*M*]⁺, 225 (21), 214 (13), 210 (14), 201 (10), 195 (20), 194 (13), 182 (28), 181 (21), 177 (20), 176 (13), 163 (26), 145 (38), 132 (42), 127 (16), 113 (10), 75 (16), 69 (22), 63 (17).

(Trifluoromethyl)1,4-dimethoxybenzene,^{S5} mixture of isomers (Fig. 1, Entry 5): 90% yield (61/29 mono-CF₃/bis-CF₃). ¹⁹F NMR (470.6 MHz, CD₃CN) δ –62.1 (s, mono-CF₃), -54.9 (s, bis-CF₃), -62.7 (s, bis-CF₃) ppm. MS (EI) *m/z* (%): mono-CF₃, 206 (82) [*M*]⁺, 191 (100), 163 (21), 129 (23), 101 (12), 63 (11); bis-CF₃, 274 (100) [*M*]⁺, 275 (11), 260 (10), 259 (96), 255 (11), 225 (20), 197 (58), 169 (27), 119 (11), 75 (11).

(Trifluoromethyl)1,4-dichlorobenzene,⁸⁶ mixture of isomers (Fig. 1, Entry 6): 43% yield (31/12 mono-CF₃/bis-CF₃). ¹⁹F NMR (470.6 MHz, CD₃CN) δ –62.8 (s, mono-CF₃), –62.6 (s, bis-CF₃), –63.4 (s, bis-CF₃) ppm. MS (EI) *m/z* (%): mono-CF₃, 214 (100) [*M*]⁺, 218 (11), 216 (64), 197 (12), 195 (18), 181 (20), 179 (65), 166 (10), 164 (16), 144 (14), 143 (12), 125 (11), 109 (16), 75 (29), 74 (29), 73 (10), 69 (19), 50 (14); bis-CF₃, 282 (100) [*M*]⁺, 286 (10), 284 (62), 283 (10), 265 (16), 263 (23), 249 (14), 247 (46), 232 (13), 213 (14), 199 (10), 197 (30), 143 (22), 120 (10), 105 (16), 74 (13), 69 (24).

(Trifluoromethyl)1,2-dichlorobenzene,^{S7} mixture of isomers (Fig. 1, Entry 7): 47% yield (41/6 mono-CF₃/bis-CF₃; isomer ratio of mono-CF₃, C3:C4 = 1:1). ¹⁹F NMR (470.6 MHz, CD₃CN) δ –62.6 (s, C3 or C4), –62.7 (s, C3 or C4), –63.6 (s, bis-CF₃) ppm. MS (EI) *m/z* (%):

mono-CF₃, 214 (100) $[M]^+$, 218 (11), 216 (64), 197 (17), 195 (26), 181 (14), 179 (43), 166 (13), 164 (19), 144 (11), 143 (10), 109 (16), 75 (27), 74 (27), 69 (27), 50 (20); bis-CF₃, 282 (96) $[M]^+$, 286 (16), 284 (59), 283 (16), 265 (20), 263 (29), 249 (12), 247 (31), 234 (12), 232 (16), 215 (18), 213 (24), 212 (11), 197 (13), 178 (10), 162 (16), 143 (35), 123 (11), 109 (12), 105 (10), 99 (13), 93 (10), 85 (10), 75 (21), 74 (21), 69 (100), 50 (13).

Trifluoromethylbenzonitrile,^{**S8**} **mixture of isomers (Fig. 1, Entry 8)** : 35% yield (33/2 mono-CF₃/bis-CF₃; isomer ratio of mono-CF₃, C2:C3:C4 = 2.6/1.0/1.7). ¹⁹F NMR (470.6 MHz, CD₃CN) δ -61.8 (s, C2), -63.0 (s, C3), -63.4 (s, C4), -57.9 (s, bis-CF₃), -61.9 (s, bis-CF₃), -62.1 (s, bis-CF₃), -62.3 (s, bis-CF₃), -63.4 (s, bis-CF₃), -63.5 (s, bis-CF₃) ppm. MS (EI) *m/z* (%): mono-CF₃, 171 (100) [*M*]⁺, 170 (26), 152 (49), 121 (51), 102 (13), 76 (16), 75 (34), 74 (10), 69 (25), 51 (21), 50 (25); bis-CF₃, 239 (100) [*M*]⁺, 240 (14), 221 (10), 220 (68), 194 (13), 189 (44), 188 (12), 170 (100), 151 (11), 150 (18), 143 (14), 139 (17), 125 (12), 120 (11), 113 (10), 100 (25), 99 (19), 93 (13), 91 (11), 75 (39), 74 (13), 69 (66), 63 (10), 51 (11), 50 (24).

Trifluoromethylpyrazine,^{**S9**} **mixture of isomers (Fig. 1, Entry 11):** 32% yield (29/3 mono-CF₃/bis-CF₃). ¹⁹F NMR (470.6 MHz, CD₃CN) δ -67.9 (s, mono-CF₃), -67.6 (s, bis-CF₃), -67.8 (s, bis-CF₃), -68.0 (s, bis-CF₃) ppm. MS (EI) *m/z* (%): mono-CF₃, 148 (20) [*M*]⁺, 80 (100), 75 (9), 53 (58), 52 (36), 51 (16); bis-CF₃, 216 (100) [*M*]⁺, 197 (30), 147 (41), 127 (14), 121 (28), 120 (24), 94 (26), 75 (27), 69 (31), 52 (16).

(Trifluoromethyl)3,5-dichloropyridine,^{\$10} mixture of isomers (Fig. 1, Entry 10) : 31% yield (26/5 mono-CF₃/bis-CF₃; isomer ratio of mono-CF₃, C2:C4 = 5.3/1.0). ¹⁹F NMR (470.6 MHz, CD₃CN) δ -57.9 (s, C4), -65.9 (s, C2), -57.5 (s, bis-CF₃), -58.5 (s, bis-CF₃), -66.3 (s,

bis-CF₃) ppm. MS (EI) *m/z* (%): mono-CF₃, 215 (89) [*M*]⁺, 217 (58), 180 (11), 167 (25), 165 (39), 148 (32), 146 (52), 130 (15), 112 (18), 110 (57), 99 (19), 87 (11), 85 (29), 84 (20), 76 (27), 75 (30), 69 (100), 68 (11), 62 (12), 60 (17), 51 (10), 50 (49); bis-CF₃, 283 (13) [*M*]⁺, 215 (100), 285 (10), 219 (11), 217 (63), 216 (11), 214 (11), 182 (19), 180 (53), 160 (14), 153 (23), 99 (18), 86 (11), 85 (19), 84 (28), 75 (21), 69 (93), 68 (11), 60 (12), 50 (10).

Trifluoromethylquinoline,^{S11} **mixture of isomers (Fig. 1, Entry 11):** 56% yield (55/1 mono-CF₃/bis-CF₃). ¹⁹F NMR (470.6 MHz, CD₃CN) δ –59.2 (s, mono-CF₃), –59.9 (s, mono-CF₃), –61.5 (s, mono-CF₃), –61.8 (s, mono-CF₃), –62.3 (s, mono-CF₃), –62.5 (s, mono-CF₃), –67.5 (s, mono-CF₃) ppm. MS (EI) *m/z* (%): mono-CF₃, 197 (100) [*M*]⁺, 198 (12), 178 (10), 176 (11), 147 (22), 75 (11), 69 (13); bis-CF₃, 265 (100) [*M*]⁺, 266 (14), 246 (23), 215 (34), 197 (16), 196 (17), 176 (21), 169 (16), 129 (69), 128 (14), 102 (17), 99 (11), 86 (17), 76 (14), 75 (19), 74 (14), 69 (28), 63 (13), 58 (12), 51 (21), 50 (23).

(Trifluoromethyl)dibenzothiophene,^{S12} mixture of isomers (Fig. 1, Entry 12): 54 % GC yield (based on CF₃SO₂Na, isomer ratio of mono-CF₃, C1:C2:C3:C3 = 4.2/1.0/1.6/2.1). ¹⁹F NMR (470.6 MHz, CD₃CN) δ –60.8 (s, C1), –61.2 (s, C2), –61.5 (s, C3), –62.9 (s, C4) ppm. MS (EI) *m/z* (%): 252 (100) [*M*]⁺, 254 (6), 253 (15), 251 (10), 233 (9), 231 (7), 202 (11), 188 (6), 139 (9), 126 (9), 101 (6).

Additional references

- S1 (*a*) S. Seo, J. B. Taylor and M. F. Greaney, *Chem. Commun.*, 2013, 49, 6385; (b) A. Sato, J. Han, T. Ono, A. Wzorek, J. L. Aceña and V. A. Soloshonok, *Chem. Commun.*, 2015, 51, 5967; (*c*) L. He, K. Natte, J. Rabeah, C. Taeschler, H. Neumann, A. Brückner and M. Beller, *Angew. Chem., Int. Ed.*, 2015, 54, 4320.
- S2 (a) S. Arimori and N. Shibata, Org. Lett., 2015, 17, 1632; (b) J. Xu, D. F. Luo, B. Xiao, Z. J. Liu, T. J. Gong, Y. Fu and L. Liu, Chem. Commun., 2011, 47, 4300; (c) B. A. Khan, A. E. Buba and L. J. Gooßen, Chem. –Eur. J., 2012, 18, 1577.
- S3 (a) T. Knauber, F. Arikan, G. V. Röschenthaler and L. J. Gooßen, Chem. –Eur. J., 2011, 17, 2689; (b) B.Bayarmagnai, C. Matheis, E. Risto and L. J. Gooßen, Adv. Synth. Catal., 2014, 356, 2343.
- S4 (a) P. Novák, A. Lishchynskyi and V. V. Grushin, *Angew. Chem., Int. Ed.*, 2012, 51, 7767;
 (b) S. Mizuta, I. S. R. Stenhagen, M. O'Duill, J. Wolstenhulme, A. K. Kirjavainen, S. J. Forsback, M. Tredwell, G. Sandford, P. R. Moore, M. Huiban, S. K. Luthra, J. Passchier, O. Solin and V. Gouverneur, *Org. Lett.*, 2013, 15, 2648.
- S5 (a) L. Li, X. Mu, W. Liu, Y. Wang, Z. Mi and C. Li, J. Am. Chem. Soc., 2016, 138, 5809;
 (b) Y. Ye, S. H. Lee and M. S. Sanford, Org. Lett., 2011, 13, 5464.
- S6 Y. Tanabe, N. Matsuo and N. Ohno, J. Org. Chem., 1988, 53, 4582.
- S7 (a) H. Kondo, M. Oishi, K. Fujikawa and H. Amii, Adv. Synth. Catal., 2011, 353, 1247; (b)
 X. Lin, C. Hou, H. Li and Z. Weng, Chem. –Eur. J. 2016, 22, 2075.
- S8 (a) G. Shi, C. Shao, S. Pan, J. Yu and Y. Zhang, Org. Lett., 2015, 17, 38.
- S9 (a) M. G. Mormino, P. S. Fier and J. F. Hartwig, Org. Lett. 2014, 16, 1744; (b) K. Aikawa,
 Y. Nakamura, Y. Yokota, W. Toya, and K. Mikami, Chem.–Eur. J., 2015, 21, 96.
- S10 E. Mejía and A. Togni, ACS Catal., 2012, 2, 521.
- S11 (a) G. Danoun, B. Bayarmagnai, M. F. Grünberg and L. J. Gooßen, Angew. Chem., Int. Ed., 2013, 52, 7972; (b) Y. Liu, X. Shao, P. Zhang, L. Lu and Q. Shen, Org. Lett., 2015, 17, 2752.
- S12 B. Wang, D. C. Xiong and X. S. Ye, Org. Lett., 2015, 17, 5698.

(OMe OMe OMe 1a OMe OMe OMe OMe	CF ₃ + CF ₃ CF ₃ OMe 3a	CF ₃ 3
Entry	Solvent	Total yield (%)	2a/3a ratio
1	Acetonitrile	45	45/<1
2	Acetonitrile/H ₂ O (9/1 v/v)	63	60/3
3	Acetonitrile/H ₂ O (8/2 v/v)	83	55/28
4	Acetonitrile/H ₂ O (6/4 v/v)	69	39/30
5	Acetonitrile/H ₂ O (4/6 v/v)	74	44/30
6	Dimethyl sulfoxide	24	24/<1
7	N,N-Dimethylformamide	5	5/<1
8	N-Methylpyrrolidone	<1	<1/<1
9	1,2-Dichloroethane	20	20/<1
10	Ethanol	12	12/<1

 Table S1
 Aerobic oxidative C-H trifluoromethylation of 1a in various solvents^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), NaSO₂CF₃ (0.6 mmol), H₅PV₂Mo₁₀O₄₀ (10 mol% with respect to **1a**), solvent (2 mL), 120 °C (bath temp.), O₂ (1 atm), 23 h.

(OMe OMe 1a	OMe CF ₃ + OMe 2a 3	OMe CF ₃ CF ₃ OMe a
Entry	Bath temperature (°C)	Total yield (%)	2a/3a ratio
1	80	26	26/<1
2	90	44	41/3
3	100	74	63/11
4	110	69	57/12
5	120	82	62/20
6	130	81	61/20

Table S2Aerobic oxidative C-H trifluoromethylation of 1a at various temperatures^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), NaSO₂CF₃ (0.6 mmol), H₅PV₂Mo₁₀O₄₀ (10 mol% with respect to **1a**), acetonitrile/water (2 mL, 4/1 v/v), 80–130 °C (bath temp.), O₂ (1 atm), 23 h.

	OMe OMe 1a	OMe CF ₃ + OMe 2a	OMe CF ₃ OMe 3a
Entry	NaSO ₂ CF ₃ (equiv)	Total yield (%)	2a/3a ratio
1	1	45	43/2
2	2	61	53/8
3	3	82	62/20
4	4	91	57/34

Table S3Aerobic oxidative C-H trifluoromethylation of 1a with various amounts ofNaSO2CF3^a

^{*a*}Reaction conditions: **1a** (0.2 mmol), NaSO₂CF₃ (0.2–0.8 mmol, 1–4 equiv with respect to **1a**), H₅PV₂Mo₁₀O₄₀ (10 mol% with respect to **1a**), acetonitrile/water (2 mL, 4/1 v/v), 120 °C (bath temp.), O₂ (1 atm), 23 h.

Table S4 Aerobic oxidative C–H trifluoromethylation of **1a** with various catalysts^a

Entry	Catalyst	Conv. of 1a (%)	Total yield (%)	2a/3a ratio
1	H ₆ PV ₃ M0 ₉ O ₄₀	92	90	61/29
2^b	V ₂ O ₅	25	19	19/<1
3 ^{<i>c</i>}	$V_2O_5 + H_3PMo_{12}O_{40}$	64	60	55/5
4^b	NaVO ₃	36	24	24/<1
5 ^{<i>c</i>}	NaVO ₃ + H ₃ PMo ₁₂ O ₄₀	80	69	60/9
6^b	VO(acac) ₂	33	27	26/1
7^c	$VO(acac)_2 + H_3PMo_{12}O_{40}$	82	74	63/11
8^d	MnCl ₂	9	1	1/<1
9 ^e	$MnCl_2 + H_3PMo_{12}O_{40}$	5	1	1/<1
10^d	$Mn(acac)_2$	6	1	1/<1
11^e	$Mn(acac)_2 + H_3PMo_{12}O_{40}$	5	2	2/<1
12^d	$Mn(acac)_3$	7	4	4/<1
13 ^e	$Mn(acac)_3 + H_3PMo_{12}O_{40}$	6	6	6/<1
14^d	Fe(acac) ₃	38	25	25/<1
15 ^e	$Fe(acac)_3 + H_3PMo_{12}O_{40}$	37	32	32/<1
16 ^{<i>d</i>}	$Co(acac)_2$	13	16	16/<1
17^e	$Co(acac)_2 + H_3PMo_{12}O_{40}$	8	3	3/<1
18^{d}	Ni(acac) ₂	21	15	15/<1
19 ^e	$Ni(acac)_2 + H_3PMo_{12}O_{40}$	1	1	1/<1
20^d	$Pd(OAc)_2$	14	2	2/<1
21 ^e	$Pd(OAc)_2 + H_3PMo_{12}O_{40}$	<1	<1	1/<1
22^d	Ag(acac)	8	9	9/<1
23 ^e	$Ag(acac) + H_3PMo_{12}O_{40}$	2	2	2/<1

^{*a*}Reaction conditions: **1a** (0.2 mmol), NaSO₂CF₃ (0.6 mmol), catalyst (10 mol% with respect to **1a**), acetonitrile/water (2 mL, 4/1 v/v), 120 °C (bath temp.), O₂ (1 atm), 6 h. Yields were determined by GC using biphenyl added as an internal standard. ^{*b*}Vanadium (30 mol%). ^{*c*}Vanadium (30 mol%) + H₃PMo₁₂O₄₀ (10 mol%). ^{*d*}Transition metal compound (30 mol%). ^{*e*}Transition metal compound (30 mol%) + H₃PMo₁₂O₄₀ (10 mol%).

Fig. S1 UV/Vis spectra of the acetonitrile solution of the mixture of $H_6PV_3Mo_9O_{40}$ and $NaSO_2CF_3$ (30 equiv with respect to $H_6PV_3Mo_9O_{40}$) (a) before and (b) after heating at 120 °C for 5 min. (c) UV/Vis spectrum of the solution after the trifluoromethylation of 1,4-dimethoxybenzene under the conditions described in Table 1.