Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Synthesis, Photophysical and Nonlinear Optical Properties of a Series of Ball-type Phthalocyanines in Solution and Thin Films

Njemuwa Nwaji, John Mack, Jonathan Britton, Tebello Nyokong*

Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa

Supplementary Information

Theoretical Calculations

The optimized structures were obtained for one of the possible isomers of **4-6** by using the B3LYP functional of the Gaussian 09 software package with SDD basis sets [1]. The hexadecane side chains were excluded to simplify the calculations. Six different isomers were calculated for **4** to study the effect of changing the points of attachment of the bridging substituents. TD-DFT calculations were carried out using the CAM-B3LYP functional with SDD basis sets. The CAM-B3LYP functional contains a long range connection that provides more accurate results for transitions with significant charge transfer character [2].

Photophysical and nonlinear optical studies.

Fluorescence and triplet quantum yields: The fluorescence (Φ_F) and triplet state (Φ_T) quantum yields were determined using the comparative methods as reported in literature [3-5], using ZnPc as a standard (Φ_F = 0.20) [3] and (Φ_T = 0.65 [5] in DMSO.

Nonlinear Optical Measurement: The nonlinear optical behaviour of the synthesized complexes were investigated by using the open aperture Z-scan technique and the data were analyzed in the manner reported by Sheik-Bahae *et al* [6,7] using equation (1):

$$T_{(Z)} = \frac{1}{1 + \beta_{eff} L_{eff} (I_{00} / (1 + (Z/Z_0)^2)))}$$
(1)

where $T_{(Z)}$ is the normalized transmittance of the sample, I_{00} is the intensity of the light on focus, β_{eff} is the two-photon absorption coefficient, Z_0 is the diffraction length of the beam, Z is the sample position with respect to input intensity and L_{eff} is the effective length for two photon absorption in a sample of path length L and is determined using equation (2).

$$l_{eff} = \frac{1 - e^{-\alpha l}}{\alpha} \tag{2}$$

where α is the linear absorption coefficient. Since equation (1) is not generally suited to directly fit experimental data, a numerical form of equation (1) which is equation (3), was employed to fit the experimental data.

$$\mathsf{T}_{(z)} = 0.363e^{\left(\frac{-q_{(z)}}{5.60}\right)} + 0.286e^{\left(\frac{-q_{(z)}}{1.21}\right)} + 0.213e^{\left(\frac{-q_{(z)}}{24.62}\right)} + 0.096e^{\left(\frac{-q_{(z)}}{115.95}\right)} + 0.038e^{\left(\frac{-q_{(z)}}{965.08}\right)}$$
(3)

The excited state cross-section (δ_{exc}) was obtained by fitting the Z-scan experimental data to equation (4):

$$T_{Norm} = \frac{In(1 + (q/(1 + X^2)))}{q/(1 + X^2)}$$
(4)

where q is a dimensionless parameter that is given by equation 5:

$$q = \frac{\alpha \delta_{exc}}{2h\nu} F_0 L_{eff}$$
⁽⁵⁾

where T_{Norm} is the normalized transmittance, F_0 (J/cm²) is the total fluence on axis, h is the Planck's constant, v is the frequency of the laser beam, and $\chi = z/z_0$.

Imaginary third-order susceptibility $(I_m[\chi^{(3)}])$ values were calculated using equation (6) [8,9]:

$$I_m[\chi]^3 = \frac{n^2 \varepsilon_0 C \lambda \beta_{eff}}{2\pi}$$

where n and c are the linear refractive index, and c is the speed of light, ε_0 is the permittivity of free space and λ is the wavelength of the laser.

(6)

The second order hyperpolarizability (γ), which indicates the nonlinear absorption per mole is related to the imaginery third order susceptibility by equation (7).

$$\gamma = \frac{I_m[\chi^3]}{f^4 C_{mol} N_A} \tag{7}$$

where C_{mol} is the molar concentration of the active species in the triplet state, f (the Lorentz local field enhancement factor) = $n^2 + 2$ /3 (where n is the refractive index of the sample), and N_A is the Avogadro's constant.

Fig S1: ¹H NMR spectrum of complex 3-6 in DMSO

Fig S2: Simulated isotopic distribution (left) and experimental MALDI-TOF mass spectrometry of complex **4-6**

Fig. S3: Absorption spectra and MCD spectra of **5** in THF. The calculated TD-DFT spectrum of the isomer of **5** with four 3,3-position attachments (**Fig. S5**) is plotted against a secondary axis. Red diamonds are used to highlight bands associated with the Q and B bands of Gouterman's 4-orbital model,^[10] while blue diamonds are used for transitions associated with what would be the $2a_{2u}$ MO of the Pc rings, if D_{4h} symmetry were assumed.

Fig. S4: Absorption spectra and MCD spectra of 6 in THF. The calculated TD-DFT spectrum of the isomer of 6 with four 3, 3-position attachments (Fig. S5) is plotted against a secondary axis. Red diamonds are used to highlight bands associated with the Q and B bands of Gouterman's 4-orbital model,^[10] while blue diamonds are used for transitions associated with what would be the $2a_{2u}$ MO of the Pc rings, if D_{4h} symmetry were assumed.

Fig. S5: The structures and predicted relative energies calculated for B3LYP optimized geometries at the CAM-B3LYP/6-31G(d) level of theory for isomers of 4 with only either 3,3- and 3,4- attachments (3,3 and 3,4), and structures with both types of attachment arranged in a 3:1 manner (mono), in oppositely and adjacently arranged 2:2 structure (adj-di and opp-di), and a 1:3 manner (tri). The hydrogen atoms are omitted for clarity.

Fig. S6: Time correlated single photon counting (TCSP) lifetime curve for 6 showing two lifetimes.

Fig S7: Representative open-aperture Z-scan transmittance of **6** fitted to the ESA absorption state cross-section as a function of sample position.

Table S1. TD-DFT spectra of the B3LYP optimized geometries for the isomers of **4-6** with with four 3,3-position attachments calculated with the CAM-B3LYP functional and SDD basis sets.

4									
Band ^a	# ^b		Cal	c ^c	Exp ^d	Wave Function ^e =			
	1					Ground State			
Q	4	16.9	590	(0.65)	14.7 681	89% 1a _{1u} → 1e _g *;			
	5	16.9	590	(0.65)	14.7 681	90% 1a _{1u} → 1e _g *;			
В	33	32.0	312	(0.97)	28.7 348	30% $1a_{2u} \rightarrow 1e_g^*$; 26% $1b_{2u} \rightarrow 1e_g^*$;			
	34	32.1	311	(0.81)	28.7 348	$42\% 1a_{2u} \rightarrow 1e_{g}^{*};$			
						5			
Band ^a	# ^b		Cal	C ^C	Exp ^d	Wave Function ^e =			
	1					Ground State			
Q	4	16.8	594	(0.58)	14.3 697	90% 1a _{iu} → 1e _g *;			
	5	16.8	594	(0.58)	14.3 697	$90\% 1a_{1u} \rightarrow 1e_g^*;$			
	18	29.6	338	(0.05)		68% $1a_{2u} \rightarrow 1e_g^*$; 13% $1b_{2u} \rightarrow 1e_g^*$;			
	19	29.6	338	(0.05)		68% $1a_{2u} \rightarrow 1e_g^*$; 13% $1b_{2u} \rightarrow 1e_g^*$;			
	24	31.4	319	(0.48)		38% $1a_{2u} \rightarrow 1e_g^*$; 31% $2a_{2u} \rightarrow 1e_g^*$;			
	25	31.4	319	(0.48)		38% $1a_{2u} \rightarrow 1e_g^*$; 31% $2a_{2u} \rightarrow 1e_g^*$;			
В	33	32.7	306	(0.59)	28.2 355	31% $1a_{2u} \rightarrow 1e_g^*$; 27% $1b_{1u} \rightarrow 1e_g^*$; 16% $2a_{2u} \rightarrow 1e_g^*$;			
	34	32.7	306	(0.59)	28.2 355	31% $1a_{2u} \rightarrow 1e_g^*$; 27% $1b_{1u} \rightarrow 1e_g^*$; 16% $2a_{2u} \rightarrow 1e_g^*$;			
	36	32.9	304	(0.68)		37% $2a_{2u} \rightarrow 1e_g^*$; 28% $1b_{1u} \rightarrow 1e_g^*$; 19% $1a_{2u} \rightarrow 1e_g^*$;			
	37	32.9	304	(0.68)		37% $2a_{2u} \rightarrow 1e_g^*$; 28% $1b_{1u} \rightarrow 1e_g^*$; 19% $1a_{2u} \rightarrow 1e_g^*$;			
						6			

Band	^a # ^b		Cal	Cc	Ехр	d	Wave Function ^e =
	1						Ground State
Q	4	16.4	611	(0.61)	14.2 7	05	88% 1a _{1u} → 1e _g *;
	5	16.4	611	(0.61)	14.2 7	05	88% 1a _{1u} → 1e _g *;
	18	29.3	341	(0.08)			67% 1a _{2u} → 1e _g *;
	19	29.3	341	(0.08)			67% 1a _{2u} → 1e _g *;
	27	30.8	325	(0.46)			34% $1a_{2u} \rightarrow 1e_g^*$; 31% $2a_{2u} \rightarrow 1e_g^*$;
	28	30.8	325	(0.46)			34% $1a_{2u} \rightarrow 1e_g^*$; 31% $2a_{2u} \rightarrow 1e_g^*$;
	31	31.5	317	(0.33)			56% $2a_{2u} \rightarrow 1e_g^*$;
	32	31.5	317	(0.33)			56% $2a_{2u} \rightarrow 1e_g^*$; 12% $1a_{2u} \rightarrow 1e_g^*$;
в	33	32.0	312	(1.21)	28.4 3	52	45% $2a_{2u}$ → $1e_g^*$; 15% $1a_{2u}$ → $1e_g^*$;
_	34	32.0	312	(1.21)	28.4 3	52	45% $2a_{2u} \rightarrow 1e_g^*$; 15% $1a_{2u} \rightarrow 1e_g^*$;

a – Band assignment described in the text. b – The number of the state assigned in terms of ascending energy within the TD-DFT calculation. c – Calculated band energies (10^3 .cm⁻¹), wavelengths (nm) and oscillator strengths in parentheses (f). d – Observed energies (10^3 .cm⁻¹) and wavelengths (nm) in **Figures 2, S3** and **S4**. e – The wave functions based on the eigenvectors predicted by TD-DFT. One-electron transitions associated with MOs associated with the four frontier π -MOs of Gouterman's 4-orbital model^[S1] are highlighted in bold. The symmetry notations used refer to the D_{4h} symmetry of the parent monomeric complexes.

References

- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision E.01 Gaussian, Inc., Wallingford CT, 2009
- 2. R. J. Magyar, S. J. Tretiak, J. Chem. Theory Comput. 2007, 3, 976–987
- 3. A. Ogunsipe, J. Chen, T. Nyokong, New J. Chem. 2004, 28, 822–827.
- 4. S. Fery-Forgues, D. Lavabre, J. Chem. Educ. 1999, **76**, 1260-1263.
- 5. T.H. Tran-Thi, C. Desforge, C. Thiec, J. Phys. Chem. 1989, 93, 1226-1233.
- 6. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 1990, 26, 760–769.
- 7. M. Sheik-bahae, Opt. Lett. 1989, 4, 955–957.
- 8. E.M. García, S.M. O'Flaherty, E.M. Maya, G. de la Torre, W. Blau, P. Vázqueza, J. Mater. Chem. 2003, 13, 749–753.
- 9. E.W. Van Stryland, M. Sheik-Bahae, Z-Scan Measurements of Optical Nonlinearities, *Charact. Tech. Tabul. Org. Nonlinear Mater.* (1998) 655–692.
- 10. Gouterman M. Optical Spectra and Electronic Structure of Porphyrins and Related Rings. In *The Porphyrins*, vol. III, Dolphin D. (Ed.) Academic Press: New York, 1978, 1-165.