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Supplementary Information

Theoretical Calculations

The optimized structures were obtained for one of the possible isomers of 4-6 by using the B3LYP functional of 
the Gaussian 09 software package with SDD basis sets [1]. The hexadecane side chains were excluded to simplify 
the calculations. Six different isomers were calculated for 4 to study the effect of changing the points of 
attachment of the bridging substituents. TD-DFT calculations were carried out using the CAM-B3LYP functional 
with SDD basis sets.  The CAM-B3LYP functional contains a long range connection that provides more accurate 
results for transitions with significant charge transfer character [2].

Photophysical and nonlinear optical studies.

Fluorescence and triplet quantum yields: The fluorescence (F) and triplet state (T) quantum yields were determined 
using the comparative methods as reported in literature [3-5], using ZnPc as a standard (F = 0.20) [3] and (T = 0.65 [5] in 
DMSO.

Nonlinear Optical Measurement: The nonlinear optical behaviour of the synthesized complexes were investigated by using 
the open aperture Z-scan technique and the data were analyzed in the manner reported by Sheik-Bahae et al [6,7] using 
equation (1):
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where T(Z) is the normalized transmittance of the sample, I00 is the intensity of the light on focus, βeff is the two-photon 
absorption coefficient, Z0 is the diffraction length of the beam, Z is the sample position with respect to input intensity and 
Leff is the effective length for two photon absorption in a sample of path length L and is determined using equation (2).
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where α is the linear absorption coefficient. Since equation (1) is not generally suited to directly fit experimental data, a 
numerical form of equation (1) which is equation (3), was employed to fit the experimental data.

T(z) = 0.363  + 0.286  + +  +𝑒
( ‒ 𝑞(𝑧)

5.60 )
𝑒

( ‒ 𝑞(𝑧)
1.21 )

0.213𝑒
( ‒ 𝑞(𝑧)

24.62 )
0.096𝑒

( ‒ 𝑞(𝑧)
115.95)

 0.038𝑒
( ‒ 𝑞(𝑧)
965.08)

(3)

The excited state cross-section (δexc) was obtained by fitting the Z-scan experimental data  to equation (4):
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(4)
𝑇𝑁𝑜𝑟𝑚 =  

𝐼𝑛(1 + (𝑞/(1 + 𝑋2))

𝑞/(1 + 𝑋2)

where q is a dimensionless parameter that is given by equation 5:

𝑞 =  
𝛼𝛿𝑒𝑥𝑐

2ℎ𝑣
𝐹0𝐿𝑒𝑓𝑓

(5)
where TNorm is the normalized transmittance, F0 (J/cm2) is the total fluence on axis, h is the Planck’s  constant, v is the 
frequency of the laser beam,  and χ = z/z0.

Imaginary third-order susceptibility (Im[χ(3)])  values were calculated using equation (6) [8,9]:

𝐼𝑚⌊𝜒⌋3 =  
𝑛2𝜀0𝐶𝜆𝛽𝑒𝑓𝑓

2𝜋
 

(6)

where n and c are the linear refractive index, and c is the speed of light, ε0 is the permittivity of free space and λ is the 
wavelength of the laser.
The second order hyperpolarizability (γ), which indicates the nonlinear absorption per mole is related to the imaginery 
third order   susceptibility by equation (7).

 

(7)

𝛾 =
𝐼𝑚[𝜒3]

𝑓4𝐶𝑚𝑜𝑙𝑁𝐴

where Cmol is the molar concentration of the active species in the triplet state, ƒ (the Lorentz local field enhancement 
factor) = n2 + 2)/3 (where n is the refractive index of the sample),  and NA is the Avogadro’s constant.





 Fig S1: 1H NMR spectrum of complex 3-6 in DMSO



Fig S2: Simulated isotopic distribution (left) and experimental MALDI-TOF mass 
spectrometry of complex 4-6



Fig. S3:  Absorption spectra and MCD spectra of 5 in THF.  The calculated TD-DFT 
spectrum of the isomer of 5 with four 3,3-position attachments (Fig. S5) is plotted 
against a secondary axis.  Red diamonds are used to highlight bands associated with 
the Q and B bands of Gouterman’s 4-orbital model,[10] while blue diamonds are 
used for transitions associated with what would be the 2a2u MO of the Pc rings, if 
D4h symmetry were assumed.



Fig. S4:  Absorption spectra and MCD spectra of 6 in THF.  The calculated TD-DFT 
spectrum of the isomer of 6 with four 3, 3-position attachments (Fig. S5) is plotted 
against a secondary axis.  Red diamonds are used to highlight bands associated with 
the Q and B bands of Gouterman’s 4-orbital model,[10] while blue diamonds are 
used for transitions associated with what would be the 2a2u MO of the Pc rings, if 
D4h symmetry were assumed.



Fig. S5: The structures and predicted relative energies calculated for B3LYP optimized 
geometries at the CAM-B3LYP/6-31G(d) level of theory for isomers of 4 with only 
either 3,3- and 3,4- attachments (3,3 and 3,4), and structures with both types of 
attachment arranged in a 3:1 manner (mono), in oppositely and adjacently arranged 
2:2 structure (adj-di and opp-di), and a 1:3 manner (tri).  The hydrogen atoms are 
omitted for clarity.



Fig. S6: Time correlated single photon counting (TCSP) lifetime curve for 6 showing two lifetimes.

Fig S7: Representative open-aperture Z-scan transmittance of 6 fitted to the ESA absorption 
state cross-section as a function of sample position.



Table S1.  TD-DFT spectra of the B3LYP optimized geometries for the isomers of 4-6 with 

with four 3,3-position attachments calculated with the CAM-B3LYP functional and SDD 

basis sets.

4

Banda #b Calcc Expd Wave Functione =

---- 1 ---- ---- ---- ---- ---- Ground State
4 16.9 590 (0.65) 14.7 681 89% 1a1u → 1eg*; …

Q
5 16.9 590 (0.65) 14.7 681 90% 1a1u → 1eg*; …
33 32.0 312 (0.97) 28.7 348 30% 1a2u → 1eg*; 26% 1b2u → 1eg*; …

B
34 32.1 311 (0.81) 28.7 348 42% 1a2u → 1eg*; …

5

Banda #b Calcc Expd Wave Functione =

---- 1 ---- ---- ---- ---- ---- Ground State
4 16.8 594 (0.58) 14.3 697 90% 1a1u → 1eg*; …Q
5 16.8 594 (0.58) 14.3 697 90% 1a1u → 1eg*; …
18 29.6 338 (0.05) --- --- 68% 1a2u → 1eg*; 13% 1b2u → 1eg*; …--
19 29.6 338 (0.05) --- --- 68% 1a2u → 1eg*; 13% 1b2u → 1eg*; …
24 31.4 319 (0.48) --- --- 38% 1a2u → 1eg*; 31% 2a2u → 1eg*; …--
25 31.4 319 (0.48) --- --- 38% 1a2u → 1eg*; 31% 2a2u → 1eg*; …
33 32.7 306 (0.59) 28.2 355 31% 1a2u → 1eg*; 27% 1b1u → 1eg*; 16% 2a2u → 1eg*; …B
34 32.7 306 (0.59) 28.2 355 31% 1a2u → 1eg*; 27% 1b1u → 1eg*; 16% 2a2u → 1eg*; …
36 32.9 304 (0.68) --- --- 37% 2a2u → 1eg*; 28% 1b1u → 1eg*; 19% 1a2u → 1eg*; …--
37 32.9 304 (0.68) --- --- 37% 2a2u → 1eg*; 28% 1b1u → 1eg*; 19% 1a2u → 1eg*; …

6

Banda #b Calcc Expd Wave Functione =

---- 1 ---- ---- ---- ---- ---- Ground State
4 16.4 611 (0.61) 14.2 705 88% 1a1u → 1eg*; …Q
5 16.4 611 (0.61) 14.2 705 88% 1a1u → 1eg*; …
18 29.3 341 (0.08) --- --- 67% 1a2u → 1eg*; …--
19 29.3 341 (0.08) --- --- 67% 1a2u → 1eg*; …
27 30.8 325 (0.46) --- --- 34% 1a2u → 1eg*; 31% 2a2u → 1eg*; …--
28 30.8 325 (0.46) --- --- 34% 1a2u → 1eg*; 31% 2a2u → 1eg*; …
31 31.5 317 (0.33) --- --- 56% 2a2u → 1eg*; …--
32 31.5 317 (0.33) --- --- 56% 2a2u → 1eg*; 12% 1a2u → 1eg*; …
33 32.0 312 (1.21) 28.4 352 45% 2a2u → 1eg*; 15% 1a2u → 1eg*; …B
34 32.0 312 (1.21) 28.4 352 45% 2a2u → 1eg*; 15% 1a2u → 1eg*; …

a − Band assignment described in the text. b − The number of the state assigned in terms of ascending energy within the 
TD-DFT calculation. c − Calculated band energies (103.cm−1), wavelengths (nm) and oscillator strengths in parentheses (f). d 
− Observed energies (103.cm−1) and wavelengths (nm) in Figures 2, S3 and S4. e − The wave functions based on the 
eigenvectors predicted by TD-DFT. One-electron transitions associated with MOs associated with the four frontier -MOs 
of Gouterman’s 4-orbital model[S1] are highlighted in bold.  The symmetry notations used refer to the D4h symmetry of the 
parent monomeric complexes.
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