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Theoretical Calculations

The optimized structures were obtained for one of the possible isomers of 4-6 by using the B3LYP functional of
the Gaussian 09 software package with SDD basis sets [1]. The hexadecane side chains were excluded to simplify
the calculations. Six different isomers were calculated for 4 to study the effect of changing the points of
attachment of the bridging substituents. TD-DFT calculations were carried out using the CAM-B3LYP functional
with SDD basis sets. The CAM-B3LYP functional contains a long range connection that provides more accurate
results for transitions with significant charge transfer character [2].

Photophysical and nonlinear optical studies.

Fluorescence and triplet quantum yields: The fluorescence (®¢) and triplet state (®1) quantum yields were determined
using the comparative methods as reported in literature [3-5], using ZnPc as a standard (®¢ = 0.20) [3] and (®; = 0.65 [5] in
DMSO.

Nonlinear Optical Measurement: The nonlinear optical behaviour of the synthesized complexes were investigated by using
the open aperture Z-scan technique and the data were analyzed in the manner reported by Sheik-Bahae et al [6,7] using
equation (1):
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where T is the normalized transmittance of the sample, Iy is the intensity of the light on focus, B is the two-photon
absorption coefficient, Z, is the diffraction length of the beam, Z is the sample position with respect to input intensity and
Lefr is the effective length for two photon absorption in a sample of path length L and is determined using equation (2).
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where a is the linear absorption coefficient. Since equation (1) is not generally suited to directly fit experimental data, a
numerical form of equation (1) which is equation (3), was employed to fit the experimental data.
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The excited state cross-section (8.,.) Was obtained by fitting the Z-scan experimental data to equation (4):
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where q is a dimensionless parameter that is given by equation 5:
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where Tyorm is the normalized transmittance, Fq (J/cm?2) is the total fluence on axis, h is the Planck’s constant, v is the
frequency of the laser beam, and x = z/z,.

Imaginary third-order susceptibility (I,[x®]) values were calculated using equation (6) [8,9]:
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where n and c are the linear refractive index, and c is the speed of light, g; is the permittivity of free space and A is the
wavelength of the laser.

The second order hyperpolarizability (y), which indicates the nonlinear absorption per mole is related to the imaginery
third order susceptibility by equation (7).
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where C is the molar concentration of the active species in the triplet state, f (the Lorentz local field enhancement
factor) = n2 + 2)/3 (where n is the refractive index of the sample), and N, is the Avogadro’s constant.
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Fig S1: '"H NMR spectrum of complex 3-6 in DMSO
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Fig S2: Simulated isotopic distribution (left) and experimental MALDI-TOF mass
spectrometry of complex 4-6
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Fig. S3: Absorption spectra and MCD spectra of 5 in THF. The calculated TD-DFT
spectrum of the isomer of § with four 3,3-position attachments (Fig. SS) is plotted
against a secondary axis. Red diamonds are used to highlight bands associated with
the Q and B bands of Gouterman’s 4-orbital model,['%] while blue diamonds are
used for transitions associated with what would be the 2a,, MO of the Pc rings, if
Dy, symmetry were assumed.
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Fig. S4: Absorption spectra and MCD spectra of 6 in THF. The calculated TD-DFT
spectrum of the isomer of 6 with four 3, 3-position attachments (Fig. S5) is plotted
against a secondary axis. Red diamonds are used to highlight bands associated with
the Q and B bands of Gouterman’s 4-orbital model,[!% while blue diamonds are

used for transitions associated with what would be the 2a,, MO of the Pc rings, if
Dy, symmetry were assumed.
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Fig. S5: The structures and predicted relative energies calculated for B3LYP optimized
geometries at the CAM-B3LYP/6-31G(d) level of theory for isomers of 4 with only
either 3,3- and 3,4- attachments (3,3 and 3,4), and structures with both types of
attachment arranged in a 3:1 manner (mono), in oppositely and adjacently arranged
2:2 structure (adj-di and opp-di), and a 1:3 manner (tri). The hydrogen atoms are
omitted for clarity.
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Fig. S6: Time correlated single photon counting (TCSP) lifetime curve for 6 showing two lifetimes.
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Fig S7: Representative open-aperture Z-scan transmittance of 6 fitted to the ESA absorption
state cross-section as a function of sample position.



Table S1. TD-DFT spectra of the B3LYP optimized geometries for the isomers of 4-6 with
with four 3,3-position attachments calculated with the CAM-B3LYP functional and SDD

basis sets.
4
Band? # Calc® Exp? Wave Function® =
- 1 e e - ---- - Ground State

4 16.9 590 (0.65) 14.7 681 89% lay, - le*; ..
5 16.9 590 (0.65) 14.7 681 90% lay, - leg*; ...
3332.0 312 (0.97) 28.7 348 30% lay, > leg*; 26% 1by, - leg*; ...

B
34321 311 (0.81) 28.7 348 42% 1ay, - leg*; ..
5
Band? #® Calc® Exp? Wave Function® =
- 1 == - - -~ - Ground State
Q 4 168594 (058) 143697 90%lay > leg*; ..
5 16.8 594 (0.58) 14.3 697 90% la;, - leg*; ...
18296 338 (0.05) - -—  68%lay > leg*; 13% 1by, > leg*; ..
19 29.6 338 (0.05) -— -  68% lay, > le.*; 13% 1by, > le,%; ..
24314319 (0.48) - -  38%1ay, > 1e,%; 31% 2a,, > 1eg*; ..
2531.4 319 (0.48) - -  38%1ay, - le;*; 31% 2a,, = le*; ..
B 33 32.7 306 (0.59) 28.2 355 31% lay, = leg*; 27% 1by, > 1leg*; 16% 2a;, > 1eg*; ...
34 32.7 306 (0.59) 28.2 355 31% lay, = leg*; 27% 1by, > leg*; 16% 2a;, - 1eg*; ...
a 36 32.9 304 (0.68) - - 37% 2ay, > leg*; 28% 1by, > leg*; 19% 1a,, > leg*; ...
37 329 304 (0.68) - - 37% 2ay, > leg*; 28% 1by, > leg*; 19% 1a,, > leg*; ...
6
Band?® #° Calce Exp?  Wave Function® =
- 1 = e - -~ -  Ground State
q 4 164611 (061) 142705 88%lay - leg¥ ..
5 16.4 611 (0.61) 14.2 705 88% lay, - le*; ..
18293 341 (0.08) - -  67%1ay > leg¥; ..
19 29.3 341 (0.08) -—- -  67%1lay, > leg*; ...
27308325 (0.46) - —  34%1ay, > 1e,*; 31% 2a,, > le*; ..
2830.8 325 (0.46) - -  34% 1ay, - le*; 31% 2a,, - le*; ..
31315317 (0.33) - -—  56%2ay, > leg¥; ..
32315 317 (0.33) - - 56% 2a - leg; 12% lag, > leg%; .
B 33 32.0 312 (1.21) 28.4 352 45% 2a,, > 1leg*; 15% 1ay, > leg*; ..

3432.0 312 (1.21) 28.4 352 45% 2a,, > leg*; 15% 1ay, > leg*; ...
a - Band assignment described in the text. b — The number of the state assigned in terms of ascending energy within the
TD-DFT calculation. ¢ — Calculated band energies (103.cm™), wavelengths (nm) and oscillator strengths in parentheses (f). d
- Observed energies (103.cm™) and wavelengths (nm) in Figures 2, S3 and S4. e — The wave functions based on the
eigenvectors predicted by TD-DFT. One-electron transitions associated with MOs associated with the four frontier ©-MOs
of Gouterman’s 4-orbital model’!l are highlighted in bold. The symmetry notations used refer to the D4, symmetry of the
parent monomeric complexes.
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