Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

for

Imidazolium-based ionic liquids with large weakly coordinating anions

William Levason, David Pugh^{*} and Gillian Reid

Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK

Contents

1.	X-ray structure of [BMPYRR][BAr ^F]	2
2.	DSC traces	3
3.	NMR spectra:	7
	• $[EMIM][BAr^{F}]$	7
	• $[EDMIM][BAr^{F}]$	9
	• [HMIM][BAr ^F]	11
	• [EMBIM][BAr ^F]	13
	• [IDiPPH][BAr ^F]	15
	• $[BMPYRR][BAr^F]$	17
	• $[EMIM][Al(O^{t}C_{4}F_{9})_{4}]$	19
	• $[EDMIM][Al(O^{t}C_{4}F_{9})_{4}]$	21
	• $[HMIM][Al(O^{t}C_{4}F_{9})_{4}]$	23
	• $[\text{EMBIM}][\text{Al}(\text{O}^{t}\text{C}_{4}\text{F}_{9})_{4}]$	25

^{*} Corresponding author: email: <u>d.pugh@imperial.ac.uk</u>; current address: Department of Chemistry, Imperial College London, South Kensington, London, SW7 2AZ, UK

X-ray structure of [BMPYRR][BAr^F]

Figure S1: ORTEP representation of [BMPYRR][BAr^F] showing one of two molecules in the asymmetric unit. Thermal ellipsoids are drawn at 50% probability and hydrogen atoms are omitted for clarity. For the X-ray CIF data, see Table 1 of the main manuscript.

DSC traces

Figure S2: DSC trace for $[EMIM][BAr^{F}]$. Key: blue = first heating cycle, green = cooling cycle, red = second heating cycle.

Figure S3: DSC trace for [EDMIM][BAr^F]. Key: blue = first heating cycle, green = cooling cycle, red = second heating cycle.

Figure S4: DSC trace for $[HMIM][BAr^{F}]$. Key: blue = first heating cycle, green = cooling cycle, red = second heating cycle.

Figure S5: DSC trace for [EMBIM][BAr^F]. Key: blue = first heating cycle, green = cooling cycle, red = second heating cycle.

Figure S6: DSC trace for $[EMIM][Al(O^{t}C_{4}F_{9})_{4}]$. Key: blue = first heating cycle, green = cooling cycle, red = second heating cycle.

Figure S7: DSC trace for [EDMIM][Al($O^{t}C_{4}F_{9}$)₄]. Key: blue = first heating cycle, green = cooling cycle, red = second heating cycle.

Figure S8: DSC trace for $[HMIM][Al(O^{t}C_{4}F_{9})_{4}]$. Key: blue = first heating cycle, green = cooling cycle, red = second heating cycle.

Figure S9: DSC trace for [EMBIM][Al($O^{t}C_{4}F_{9}$)₄]. Key: blue = first heating cycle, green = cooling cycle, red = second heating cycle.

Spectral Data

[EMIM][BAr^F]:

Figure S10: 1 H NMR spectrum (CD₂Cl₂, 298 K).

Figure S11: ¹H NMR spectrum (CDCl₃, 298 K).

Figure S12: ¹³C{¹H} NMR spectrum (CDCl₃, 298 K).

Figure S13: ${}^{19}F{}^{1}H{}$ NMR spectrum (CDCl₃, 298 K).

[EDMIM][BAr^F]:

Figure S14: ¹H NMR spectrum (CD₂Cl₂, 298 K).

Figure S15: ¹H NMR spectrum (CDCl₃, 298 K).

Figure S16: ¹³C{¹H} NMR spectrum (CDCl₃, 298 K).

Figure S17: ${}^{19}F{}^{1}H{}$ NMR spectrum (CDCl₃, 295 K).

[HMIM][BAr^F]:

Figure S18: ¹H NMR spectrum (CD₂Cl₂, 298 K).

Figure S19: $^{13}C{^{1}H}$ NMR spectrum (CD₂Cl₂, 298 K).

Figure S20: ${}^{19}F{}^{1}H$ NMR spectrum (CD₂Cl₂, 298 K).

[EMBIM][BAr^F]:

Figure S21: ¹H NMR spectrum (CD₂Cl₂, 298 K).

Figure S22: ¹H NMR spectrum ((CD₃)₂CO, 298 K).

Figure S23: $^{13}C{^{1}H}$ NMR spectrum ((CD₃)₂CO, 298 K).

[IDiPPH][BAr^F]:

Figure S24: ¹H NMR spectrum (CD₂Cl₂, 298 K).

Figure S25: ¹H NMR spectrum (CDCl₃, 298 K).

Figure S26: ¹³C{¹H} NMR spectrum (CDCl₃, 298 K).

[BMPYRR][BAr^F]:

Figure S27: ¹H NMR spectrum (CDCl₃, 298 K).

Figure S28: ¹³C{¹H} NMR spectrum (CDCl₃, 298 K).

Figure S29: DEPT-135 NMR spectrum (CDCl₃, 298 K).

Figure S30: $^{19}F{}^{1}H$ NMR spectrum (CDCl₃, 298 K).

[EMIM][Al(O^tC₄F₉)₄]:

Figure S31: ¹H NMR spectrum (CD₂Cl₂, 298 K).

Figure S32: ¹H NMR spectrum ((CD₃)₂CO, 298 K).

Figure S33: ¹³C{¹H} NMR spectrum ((CD₃)₂CO, 298 K).

Figure S34: ${}^{19}F{}^{1}H$ NMR spectrum ((CD₃)₂CO, 298 K).

[EDMIM][Al(O^tC₄F₉)₄]:

Figure S35: ¹H NMR spectrum (CD₂Cl₂, 298 K).

Figure S36: ¹H NMR spectrum ((CD₃)₂CO, 298 K).

Figure S37: ¹³C{¹H} NMR spectrum ((CD₃)₂CO, 298 K).

Figure S38: ${}^{19}F{}^{1}H{}$ NMR spectrum ((CD₃)₂CO, 298 K).

[HMIM][Al(O^tC₄F₉)₄]:

Figure S39: ¹H NMR spectrum (CD₂Cl₂, 298 K).

Figure S40: $^{13}C{^{1}H}$ NMR spectrum (CD₂Cl₂, 298 K).

Figure S41: ${}^{19}F{}^{1}H$ NMR spectrum (CD₂Cl₂, 298 K).

[EMBIM][Al(O^tC₄F₉)₄]:

Figure S42: ¹H NMR spectrum (CD₂Cl₂, 298 K).

Figure S43: ¹H NMR spectrum ((CD_3)₂CO, 298 K).

Figure S44: ${}^{13}C{}^{1}H$ NMR spectrum ((CD₃)₂CO, 298 K).

Figure S45: ¹⁹F{¹H} NMR spectrum ((CD₃)₂CO, 298 K).