Supporting information for

TiO₂-Pd/C Composited Photocatalyst with Improved

Photocatalytic Activity for Photoreduction of CO₂ into CH₄

Yanlong Yu^{a,b}, Wenjun Zheng^{a,b*} and Yaan Cao^{c*}

a: Department of Materials Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), and TKL of Metal and Molecule-Based Materials Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China ^a. b: Collaborative Innovation center of Chemical Science and Engineering

^{*a.*} b: Collaborative Innovation center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, P. R. China

b. E-mail: zhwj@nankai.edu.cn

^{c.} Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China. E-mail: caoya@nankai.edu.cn

Figure S1. XPS Pd 3d spectra of TiO₂-Pdx%.

Figure S2. DRS absorption spectra for TiO2-Pdx%.

Figure S3. Photocatalytic activity for TiO2-Pdx%.

Figure S4. Pd 3d spectrum for TiO₂-Pd after reaction.

Figure S5.Blank experiment.