Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary materials

for

A novel and rapid approach for the synthesis of biocompatible and highly stable Fe₃O₄/SiO₂ and Fe₃O₄/C core/shell nanocubes and nanorods

Mohamed Abbas^{1, 2, 3}*, Sri RamuluTorati¹, Asif Iqbal¹, CheolGi Kim^{1,*}

¹Department of Emerging Materials Science, DGIST, Daegu, 711-873, South Korea ²Ceramics Department, National Research Centre, 12622 El-Bohouth Str, Cairo, Egypt ³State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Science, Taiyuan 030001, China

Fig S1. TEM images of Fe_3O_4/SiO_2 nanocubes with 2 mL TEOS; (a) low magnification and (b, c) high magnification.

Fig S2. TEM images of Fe_3O_4/SiO_2 nanocubes with 4 mL TEOS; (a) low magnification and (b, c) high magnification.

Fig S3. XPS survey spectra of Fe_3O_4 , Fe_3O_4/SiO_2 and Fe_3O_4/C core/shell

nanocubes

Fig S4. FTIR analysis data for both (A) Fe_3O_4 nanocubes and (B) Fe_3O_4/C synthesized in the presence of ultrasound.

Fig. S5

Fig S5. XRD patterns of (A) as-prepared Fe_3O_4 nanocubes and (B) Fe_3O_4/C synthesized in the presence of ultrasound.

