Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supplementary Information

An efficient method for regioselective ring opening of epoxides by amines under microwave irradiation using $Bi(NO_3)_3.5H_2O$ as catalyst

Shobha Bansal, Yogendra Kumar, Parveen Pippal, Dipak K. Das, Panchanan Pramanik and

Prabal P. Singh*

Department of Chemistry, GLA University, 17 km stone, NH-2 Delhi-Mathura Highway,

Chaumuhan, Mathura UP 281406, India

SNo.	Content	Page no.
1	HPLC Spectrum	S2
2	FTIR of Bismuth nitrate(III)pentahydrate	83
3	FTIR of dehydrated solvated Bismuth nitrate	S4
4	Analytical data of compounds	S5-S8
5	¹ H and ¹³ C NMR-Spectra	S9-S22

Figure S1. HPLC spectrum of 2-(1H-imidazol-1-yl)-2-phenylethanol) Scheme 3

⊕ SHIMADZU

Figure S2. FTIR spectrum of Bismuth(III)nitrate pentahydrate

Figure S3. FTIR spectrum of Bismuth nitrate dehydrated (water molecule replaced by DMF molecule)

(2-phenyl-2-(phenylamino)ethanol), (Table 4, entry 1) Colourless Liquid, R_f = 0.46 (2:8 EtOAc/hexane); IR (KBr cm⁻¹): 2932, 2878, 2402, 1949, 1453, 1361, 1216, 1066, 1028, 926, 756. ¹H NMR (300 MHz, CDCl3): 7.39-7.05(m, 5H, ArH); 7.12-7.05(m, 2H); 6.60(t, *J*=8.7Hz,1H); 6.50(d, *J*=8.7Hz, 1H); 4.48(dd, *J*=4.2Hz,7.2Hz, 1H); 3.92(dd, *J* = 4.2,11.1Hz, 1H); 3.74(dd, *J* = 6.9Hz,11Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): 147.2, 140.2, 129.4, 127.8, 126.9, 126.0, 118.2, 114.2, 67.4. Mass ESI m/z (%) M⁺+1=214; 196(90%).

2-(4-methylpiperazine-1-yl)-2-phenylethanol) (Table 4, entry 2) Liquid, $R_f = 0.35$ (2:8 EtOAc/hexane); IR(KBr, cm⁻¹): 3787, 2944, 2805, 1363, 1215, 1060, 928, 702. ¹H NMR (300 MHz, CDCl₃):7.28(m, 5H, Ar); 3.95(t, 1H); 3.65(m,2H,CH₂); 2.7(s, -OH); 2.50(m,-CH₂); 2.31(s,CH3) ¹³C NMR (75MHz, CDCl₃): 142, 136, 127, 68, 66, 60, 55, 49, 45. Mass ESI m/z (%) M⁺⁺ CH₃COOH= 281.

(2-phenyl-2-(pyrolodin-1-yl)ethanol), (Table 4, entry 3) Viscous Liquid, $R_f = 0.56$ (4:6 EtOAc/hexane); ¹H NMR (300 MHz, CDCl₃): 7.42-7.23(m, 3H); 3.93-3.81(dd, 1H); 3.23 (brs, -OH, 1H); 2.87-2.81(dd, 1H); 2.64-2.52(dd, 1H); 2.04-1.71(m, 2H). ¹³C NMR (75 MHz, CDCl₃): 142.5, 138.7, 128.7, 128.2, 126.8, 70.7, 70.2, 64.3, 54.1, 51.6, 23.8, 23.3. Mass ESI m/z (%) M⁺+1=192.

2-(4-methylpiperidin-1-yl)2-phenylethanol) (Table 4, entry 4) Liquid, R_f=0.38 (2:8 EtOAc/hexane); ¹H NMR (300 MHz, CDCl₃): 7.27(m, 5H, ArH); 4.7(1H,dd, *J*=4.2,9.9, -CH) ; 3.12(s,-OH); 2.65(t,2H,-CH₂); 2.38(t,2H,-CH₂); 2.0(t,2H,-CH₂); 1.28(-CH₂); 0.90(s,-CH₃). 13 C NMR (75MHz, CDCl₃): 142.2, 128.4, 127.9, 126.8, 70.1, 63.9, 46.4, 34.7, 30.9, 22.0. Mass ESI m/z (%) M⁺= 220 (2-(*diisopropylamino*)-2-*phenylethanol*) (Table 4, entry 5) viscous liquid, R_f =0.46(1:9 EtOAc/hexane); ¹H NMR (300 MHz, CDCl₃): 7.4-7.2(m, 5H, Ar); 4.7(dd, *J*=2.7Hz,7.8Hz 1H); 3.7-3.3(m, 3H). ¹³C NMR (75MHz, CDCl₃): 140.7, 139.1, 138.1, 128.6, 128.3, 127.8, 126.8, 126.2, 84.6, 83.1, 79.4, 68.4, 67.2. Mass ESI m/z (%) M⁺+AcOH= 281, M⁺= 221(100%).

(2-(dipropylamino)-2-phenylethanol) (Table 4, entry 6) Liquid, $R_f = 0.55$ (4:6 EtOAc/hexane); IR(KBr, cm⁻¹): 3399, 2962, 2401, 1390, 1216, 1029, 757, 669. ¹H NMR (300 MHz, CDCl₃): 7.2(m, 5H, ArH); 4.5(brs, OH); 3.9(t,-CH); 3.61(dd, J=2.7, 2H); 2.5(m,-CH₂); 2.20(m, -CH₂); 1.56(m,-CH3). ¹³C NMR (75MHz, CDCl₃): 142.6, 127.9, 69.4, 64.1, 60.5, 56.2, 51.8, 21.0, 12.0; Mass ESI m/z (%) M⁺+1=222.

(2-(naphthalene-1-ylamino)-2-phenylethanol), (Table 4, entry 7) Liquid, $R_f = 0.70$ (1:4 EtOAc/hexane); IR (KBr, cm⁻¹): 3410, 3018, 2931, 2402, 1583, 1479, 1407, 1283, 1216, 1067, 759. ¹H NMR (300 MHz, CDCl₃): 8.0-8.3(m, 1H, ArH); 7.75-7.79 (m, 1H, ArH); 7.12-7.50(m, 12H, ArH, NH); 6.36(d, 1H, *J*=8.4Hz); 4.65 (1H, dd, *J*=4.2Hz-6.9Hz, 1H); 4.05(dd, *J*=4.2Hz,11Hz, 1H); 3.87(dd, *J*=6.9Hz,10.9Hz, 1H); 3.45(s,1H,-OH). ¹³C NMR (75MHz, CDCl₃): 142.3, 140.0, 134.4, 128.9, 127.8, 127.2, 126.8, 126.6, 125.9, 125.0, 124.0, 120.2, 118.0, 106.7, 67.7, 60.1. Mass ESI m/z (%) M⁺+1 = 264.

(2-phenyl-2-(o-tolylamino)ethanol). (Table 4, entry 8) Thick viscous liquid, $R_f = {}^{1}H$ NMR (300 MHz, CDCl₃): 7.22-7.36(m, 5H, ArH); 7.05(d, *J*=7.8Hz, 1H); 6.9(t, *J*=16.8Hz, 1H); 6.6(t, *J*= 15.6Hz, 1H); 6.37(d, *J*=7.8Hz, 1H); 4.5(dd, *J*=4.2Hz,7.2Hz, 1H); 3.9(dd, *J*=4.2Hz,6Hz, 1H), 3.7(dd, *J*=6.9Hz,12Hz, 1H); 2.2(s, 3H); 2.0(brs, 1H, OH). {}^{13}C NMR (75MHz, CDCl₃): 144.9, 140.1, 130.3, 129.0, 127.8,

127.1, 126.9, 122.9, 117.9, 112.0, 67.5, 60.2, 17.8; Mass ESI m/z (%) M⁺=108; M⁺+2 = 110.

(2-(butyl(methyl)amino)-2-phenylethanol). (Table 4, entry 9) Thick viscous liquid, $R_f = 0.41(1:9 \text{ EtOAc/hexane})$; ¹H NMR (300 MHz, CDCl₃): 7.28(m, 5H, ArH); 3.94(t, 1H); 3.78(d, 2H); 3.65(dd, *J*=3.6Hz,9Hz, 2H); 3.27(s, -OH); 2.43(m, 2H); 2.16(s, 3H). ¹³C NMR (75MHz, CDCl₃): 142.5, 131.2, 126.0, 69.1, 60.6, 57.7, 41.9, 29.5, 20.6, 14.2; Mass ESI m/z (%) M⁺+1= 208.

(*1-chloro-3-(phenylamino)propan-2-ol*). (Table 4, entry 10) Light Yellow solid, mp 69°-70°C; IR (KBr, cm⁻¹): 3523, 3388, 3267, 3055, 1436, 1255, 602, 502. ¹H NMR (300MHz, CDCl₃): 7.17-7.25(m, 2H) 4.77(dd, *J*=4.2*Hz*,13.0*Hz*, 2H) 3.65(dd, *J*=6.9*Hz*,13.3*Hz*, 1H) 2.99(brs, 1H); ¹³C NMR (75MHz, CDCl₃): 147.5, 129.6, 118.6, 113.6, 70.0, 47.8, 47.4. Mass ESI m/z (%): (M+1)=186; (M⁺+3)188.

(1-chloro-3-(p-tolylamino)propan-2-ol). (Table 4, entry 11) Crystalline Solid, mp 68-70°C; $R_f = 0.63$ (1:4 EtOAc/hexane); IR (KBr, cm⁻¹): 3336, 2958, 2850, 1616, 1517, 1450, 1288, 707, 543. ¹H NMR (300 MHz, CDCl₃): 3.18(dd, J = 7.2 Hz,15Hz, 1H); 3.34(dd, J = 4.2Hz,13.3Hz, 1H); 3.63(m, J = 3.6Hz,12.0Hz, 2H); 4.0(m, 1H). ¹³C NMR (75MHz, CDCl₃): 145.6, 130.0, 127.8, 113.7, 76.8, 47.9, 20.5. Mass ESI m/z (%) (M⁺+1)= 200.

(1-chloro-3-(o-tolylamino)propan-2-ol). (Table 4, entry 12) Viscous Liquid, ¹H NMR (300MHz, CDCl₃): 3.27(dd, *J*=7.2Hz,13.2Hz, 1H); 3.43(dd, *J*=4.2Hz,13.2Hz, 1H); 3.65(dd, *J*=4.5Hz,12Hz, 2H); 4.13-4.17(m, 1H); 6.70(dd, *J*=7.2Hz,16.5Hz, 2H); 7.06-7.16(m, 2H); ¹³C NMR (75MHz, CDCl₃): 145.6, 130.6, 127.4, 123.1, 118.3, 110.6, 77.6, 69.9, 48.0.

(*1-chloro-3-(naphthalen-1-ylamino)propan-2-ol*) (Table 4, entry 13) Liquid, R_f=0.48 (1:4 EtOAc/hexane) ¹H NMR (300 MHz, CDCl₃):3.39(dd, *J*=7.2Hz,12.9Hz, 1H); 3.53(brs, 1H, OH); 3.47 (m, *J*=2.4Hz,4.8Hz, 1H); 3.7(m, 2H); 4.2(1H, NH); ¹³C NMR (75MHz, CDCl3): 142.8, 134.5, 128.9, 126.5, 126.1, 125.3, 124.0, 120.1, 118.9, 105.7, 69.8.

2-(*1H-imidazol-1-yl*)-2-phenylethanol) (Scheme 3) Liquid, R_f = 0.59 (Pure EtOAc); ¹H NMR (300 MHz, CDCl₃): 7.43(m, 5H, Ar); 7.16(s, 1H); 6.9(s, 1H); 6.9(s, 1H); 4.9(s, 1H); 4.1(2H,CH₂); 2.6(s,-OH). 13 C NMR (75MHz, CDCl₃): 141.0, 129.2, 128.9, 128.7, 128.5, 127.0, 126.0, 120.0. Mass ESI m/z (%) M⁺=188; M⁺+2=189.

(1-chloro-3-(1H-imidazo-1-yl)propan-2-ol), (Scheme 3) Viscous Liquid, $R_f = 0.59$ (Pure EtOAc) IR (KBr cm⁻¹): 3685, 3467, 2400, 1671, 1513, 1476, 1215, 1079. ¹H NMR (300 MHz, CDCl₃): 7.55(d, 1H); 6.97(m, 1H); 4.07(m, 2H); 3.55(dd, J = 4.5,12.6, 1H), 3.48-3.36(m, 1H). ¹³C NMR (75 MHz, CDCl₃): 136.5, 128.7, 121.0, 70.4, 50.3, 45.7. Mass ESI m/z (%) M⁺+1=161; M⁺+3= 163(42%).

Figure S4. ¹H and ¹³C Spectrum of 2-phenyl-2-(phenylamino)ethanol (Table 4, entry 1)

Figure S5. ¹H and ¹³C Spectrum of *2-(4-methylpiperizine-1-yl)2-phenylethano* (Table 4, entry 2)

7,405 7,339 7,337 7,337 7,337 7,337 7,337 7,338 7,337 7,338 7,238

Figure S6. ¹H and ¹³C Spectrum of (2-phenyl-2-(pyrolodin-1-yl)ethanol) (Table 4, entry 3)

Figure S7. ¹H and ¹³C Spectrum of 2-(4-methylpiperidin-1-yl)2-phenylethanol (Table 4, entry 4)

Figure S8. ¹H and ¹³C Spectrum of (2-(dipropylamino)-2-phenylethanol) (Table 4, entry 5)

Figure S9. ¹H and ¹³C Spectrum of *2-(dipropylamino)-2-phenylethanol* (Table 4, entry 6)

Figure S10. ¹H and ¹³C Spectrum of 2-(naphthalene-1-ylamino)-2-phenylethanol (Table 4, entry 7)

7,777 7,775 7,756 7,756 7,756 7,550 7,550 7,550 7,550 7,745 7,446 7,745 7,446 7,741 7,425 7,7337 7,7337 7,7337 7,7337 7,7337 7,7337 7,7337 7,7337 7,7357 7,7

Figure S11. ¹H and ¹³C Spectrum of (2-phenyl-2-(o-tolylamino)ethanol(Table 4, entry 8)

Figure S12. ¹H and ¹³C Spectrum of 2-butyl (methyl) amino-2-phenylethanol) (Table 4, entry 9)

Figure S13. ¹H and ¹³C Spectrum of 1-chloro-3-(phenylamino) propan-2-ol (Table 4, entry 10)

Figure S14. ¹H and ¹³C Spectrum of *1-chloro-3-(p-tolylamino)propan-2-*ol (Table 4, entry 11)

Figure S15. ¹H and ¹³C Spectrum of *(1-chloro-3-(o-tolylamino)propan-2-ol)* (Table 4, entry

12)

Figure S16. ¹H and ¹³C Spectrum of *1-chloro-3-(naphthalen-1-ylamino) propan-2-ol* (Table 4, entry 13)

Figure S17. ¹H and ¹³C Spectrum of 2-(1H-imidazol-1-yl)-2-phenylethanol (Scheme 3)