Zwitterionic Liquid (ZIL) Coated CuO as an Efficient Catalyst for the Green Syntheses of Bis-Coumarins derivatives *via* One-Pot Multi-component Reactions Using Mechanochemistry

Mayank^a, Amanpreet Singh^a, Pushap Raj^a, Randeep Kaur^b, Ajnesh Singh^c, Navneet Kaur^d, Narinder Singh^{*a}

^a Department of Chemistry, Indian Institute Technology Ropar, Punjab 140001, India.

^b Department of Chemistry, Guru Nanak Dev University Amritsar, Punjab 143001, India.

^c Department of Applied Sciences and Humanities, Jawaharlal Nehru Government Engineering

College, Sundernagar, Mandi (H.P.) 175018, India.

^d Department of Chemistry, Panjab University, Chandigarh, 160014, India.

Email: <u>nsingh@iitrpr.ac.in;</u>

Table ST1. Eco scale calculation for the reaction of 4-hydroxybenzaldehyde and 4-hydroxycoumarin on 10 mmol scale.¹

		Detail of parameters	Penalty Points	
1.	Yield		5	
		90%		
2.	Cost of reactants to	obtain 10 mmol of product		
			0	
		4-Hydroxybenzaldehyde	0	
		4-Hydroxycoumarin	0	
		Zil@CuO1	0	
		Methanol (10 ml)	0	
3.	Safety			
		4-Hydroxybenzaldehyde	5 (T)	
		4-Hydroxycoumarin	5 (T)	
		ZIL@CuO1	5 (N)	
		Methanol (10 ml)	10 (F, T)	
4.	Technical Setup			
		Ball-mill	2	
_	-			
5.	Temperature Time	D		
		Room temperature, 3 h	1	
		Annealing for CuO, Heating > 1 h	3	
6	Work up and purific	ation		
0.	work-up and purific	10011 Solvent oddod	0	
		Solvent added	0	
		Simple Filtration	0	

Total of all penalties was 36, the total score was found to be 64 (100-36) indicating acceptable synthesis

Table ST2. Calculation of E-factor for the reaction of 4-Hydroxybenzaldehyde and 4-Hydroxycoumarin. 1

S.	Reaction	Energy	Solvent Used	Catalyst	Yield	References
No	Time	Source		Reusability		
1	2.5 h	Reflux	Methanol	No	86%	2
2	24 h	Reflux	Methanol	No	83%	3
3	1 h	Reflux	Water	No	84%	4
4	24 h	Reflux	Ethanol	No	82%	5
5	5 h	Reflux	Acetic acid	No	78%	6
6	5H	Reflux	Ethanol	No	91%	7
7	24 h	Reflux	Ethanol	No	97%	8
8	1 h	Reflux	Water	No	88%	9
9	180 min	Mechanical	No Solvent	Recyclable	<u>94</u> %	-
			usea			

 Table ST3. Advancements of developed method over the methods documented in literature.

Bond lengths(Å)							
O(1)-C(9)	1.2101(16)	O(4)-C(11)	1.227(6)	O(7)-C(22)	1.2781(17)		
O(2)-C(9)	1.2816(17)	O(5)-C(20)	1.211(12)	O(8)-C(22)	1.2051(17)		
O(3)-C(11)	1.2636(18)	O(6)-C(20)	1.2701(17)				
	Bond angles(°)						
C(1)-N(1)-C(2)	108.36(11)	C(1)-N(2)-C(8)	126.33(12)	C(13)-N(3)-C(21)	126.10(11)		
C(1)-N(1)-C(10)	126.60(14)	C(7)-N(2)-C(8)	124.90(11)	C(12)-N(4)-C(18)	108.30(11)		
C(2)-N(1)-C(10)	125.04(13)	C(12)-N(3)-C(13)	108.29(11)	C(12)-N(4)-C(19)	125.15(13)		
C(1)-N(2)-C(7)	108.53(11)	C(12)-N(3)-C(21)	125.44(12)	C(18)-N(4)-C(19)	126.55(13)		

Table ST4. Selected bond lengths and angles (Å,°) for ZIL1

Figure SF1. The packing diagram of compound ZIL1

D-H··· A	D····A∕ Å	H···A∕Å	D-H····A/º
02-H2A06 ⁱ	2.479(2)	1.662(1)	174.3(1)
07-H7A03 ⁱⁱ	2.468(2)	1.649(1)	175.9(1)
C1-H1AO1 ⁱⁱⁱ	3.145(2)	2.501(1)	126.6(1)
C1-H1AO6 ^{iv}	3.316(2)	2.498(1)	146.9(1)
C3-H3AO2 ^v	3.439(2)	2.584(1)	153.0(1)
C4-H4AO1 ^{vi}	3.289(2)	2.490(1)	144.1(1)
C5-H5AO6	3.224(3)	2.577(1)	127.1(1)
C12-H12AO8vii	3.000(2)	2.405(1)	121.7(1)
C15-H15AO8 ⁱⁱ	3.399(3)	2.661(1)	136.8(1)
C15-H15AO3	3.188(3)	2.520(1)	129.0(1)
C16-H16AO8viii	3.179(2)	2.540(1)	126.2(1)
C17-H17AO7 ^{ix}	3.465(2)	2.596(1)	155.7(1)
C19-H19AO7 ^{ix}	3.587(2)	2.617(1)	178.2(1)

Table ST5. Hydrogen bonding parameters (Å, °) for Compound ZIL1

Equivalent positions: (i) -x+1,-y+1,-z, (ii) -x+1,-y,-z+1, (iii) -x+2,-y+1,-z, (iv) x+1,+y,+z, (v)-x+1,-y,-z, (vi) x-1,+y-1,+z, (vii) -x,-y,-z+1, (viii) x+1,+y+1,+z, (ix)-x+1,-y+1,-z+1.

Figure SF2. Linear correlation was observed between cathodic peak current and the square root in CV study for **ZIL@CuO1-3** with subsequent increase in scan rate.

S. No	Catalyst	E1 _{pc}	E1 _{pa}	ΔΕ1	E1 _{1/2}	$I1_c/I1_a$	E2 _{pc}	E2 _{pa}	ΔE_2	E2 _{1/2}	$I2_c/I2_a$
		mV	mV	mV	mV				mV		
1	ZIL1	-0.477	-0.444	0.33	-0.460	1.17	-	-	_	_	-
2	ZIL2	-0.605	-0.587	0.18	-0.596	0.37	0.094	0.029	65	0.615	1.12
3	ZIL3	-0.515	-0.451	0.64	-0.483	1.24	-	-	_	_	-
4	CuO	-0.500	-0.420	0.80	-0.460	3	-	-	_	_	-
5	ZIL1 + Cu	0.344	0.547	0.203	0.445	6	0.675	0.211	464	0.443	1.26
6	ZIL3 + Cu	-0.558	-0.414	0.144	-0.486	1.19	-	-	_	_	-
7	ZIL2 + Cu	-0.980	-0.897	0.83	-0.938	3.2	0.295	0.161	134	0.228	0.57
8	ZIL@CuO1	-0.549	-0.308	0.241	-0.428	0.30	-	-	_	_	-
9	ZIL@CuO2	507	-0.476	0.31	-0.491	1.2	-	-	_	_	-
10	ZIL@CuO3	-0.638	0.457	1.281	-0.547	6.03	-	-	-	_	-

Table ST6. Multiple CV based parameters obtained during study

E1_{pc}: Electrode potential at first cathodic peak

E1_{pa}: Electrode potential at first anodic peak

ΔE1: Electrode Potential for first peak

E1_{1/2}: Half electrode potential for first peak

I1c: Cathodic peak current for first peak

I1_a: Cathodic peak current for first peak

E2_{pc}: Electrode potential at second cathodic peak

 $E2_{pa}{:}$ Electrode potential at second anodic peak

 ΔE_2 : Electrode Potential for second peak

 $E2_{1/2}$: Half electrode potential for second peak

I2c: Cathodic peak current for second peak

I2a: Cathodic peak current for second peak

Figure SF3. PXRD pattern of ZIL@CuO1 after calcined at 500 °C for 5h. Typical CuO based pattern was obtained.

Sr. No	Time (Min)	Speed (rpm)	Yield (%)
1	30	600	25
2	40	600	32
3	50	600	40
4	60	600	40
5	80	600	55
6	100	600	75
7	120	600	78
8	150	600	82
9	180	600	86
10	210	600	86
11	240	600	85
12	180	400	68
13	180	500	75
14	180	800	67

Table ST7. Effect of milling time and milling speed on the yield of reaction.

Sr. No	Time (Min)	Temp (° C)#
1	0	22.4
2	5	25.8
3	10	28.5
4	15	31.3
5	20	35.2
6	30	38.7
7	45	41.6
8	60	47.2

Table ST8. Effect of milling time on the heat produced inside the milling jar

Sr. No	No Of Balls	Yield %	
1	20	45.5	
2	25	45.1	
3	30	55.0	
4	35	62.2	
5	40	75.6	
6	45	86.3	
7	50	85.8	
8	55	79.3	
9	60	73.8	

Table ST9. Effect of ball number on the yield of reaction

Bond lengths(Å)					
O(1)-C(10)	1.350(6)	O(4)-C(19)	1.347(6)	O(7)-N(1)	1.215(6)
O(1)-C(9)	1.383(6)	O(4)-C(18)	1.392(7)	O(8)-N(1)	1.208(6)
O(2)-C(10)	1.235(6)	O(5)-C(19)	1.228(7)	O(9)-C(35)	1.359(6)
O(3)-C(3)	1.326(6)	O(6)-C(12)	1.334(6)	O(9)-C(34)	1.380(6)
O(10)-C(35)	1.216(6)	O(12)-C(44)	1.348(6)	O(13)-C(44)	1.227(6)
O(11)-C(28)	1.338(5)	O(12)-C(43)	1.382(6)	O(14)-C(37)	1.341(5)
O(15)-N(2)	1.207(7)	O(16)-N(2)	1.209(7)		
	I	Bond angles	S(⁰)		I
C(10)-O(1)-C(9)	122.0(4)	O(8)-N(1)-O(7)	122.4(6)	O(5)-C(19)-O(4)	115.6(5)
C(19)-O(4)-C(18)	121.0(5)	O(8)-N(1)-C(24)	119.2(5)	O(5)-C(19)-C(11)	125.0(5)
C(35)-O(9)-C(34)	121.6(4)	O(7)-N(1)-C(24)	118.5(6)	O(4)-C(19)-C(11)	119.3(5)
C(44)-O(12)-C(43)	122.0(4)	O(15)-N(2)-O(16)	122.3(7)	O(11)-C(28)-C(27)	124.3(5)
O(8)-N(1)-O(7)	122.4(6)	O(15)-N(2)-C(49)	118.5(7)	O(11)-C(28)-C(29)	115.2(5)
O(8)-N(1)-C(24)	119.2(5)	O(16)-N(2)-C(49)	119.2(6)	O(10)-C(35)-O(9)	116.2(4)

 Table ST10. Selected bond lengths and angles (Å,°) for compound (12)

Figure SF4. Packing diagram of compound (12) shown down a axis.

D-H··· A	DA/ Å	H····A/ Å	D-H····A/º
O3-H3AO5	2.646(6)	1.852(4)	162.4(4)
O6-H6BO2	2.701(6)	1.888(4)	171.0(3)
O11-H11AO13	2.600(5)	1.783(4)	174.1(3)
O14-H14BO10	2.712(5)	1.955(4)	153.1(3)
C5-H5AO3 ⁱ	3.269(7)	2.557(4)	133.6(4)
C6-H6AO5 ⁱ	3.577(7)	2.663(4)	167.8(4)
C21-H21AO16 ⁱⁱ	3.287(8)	2.608(5)	130.3(4)
С31-Н31АО13 ііі	3.365(7)	2.512(4)	152.6(4)
C39-H39AO10 ^{iv}	3.189(6)	2.354(3)	149.1(4)
C41-H41AO1 v	3.334(7)	2.553(3)	141.8(4)
C42-H42AO2 v	3.293(7)	2.630(4)	128.8(4)
C42-H42AO6 v	3.461(6)	2.552(3)	165.9(4)
C46-H46AO8	3.490(9)	2.635(5)	153.0(4)

Table ST11. Hydrogen bonding parameters (Å, °) for Compound (12)

Equivalent positions: (i) -x,-y+2,-z+1, (ii) x,+y+1,+z, (iii) -x+1,-y,-z+2, (iv) -x,-y+1,-z+2, (v) x+1,+y,+z

Table ST12. NMR data of compounds synthesized during experimental procedure

1,3-bis(carboxymethyl)-1H-benzo[d]imidazol-3-ium bromide (ZIL1) ¹H NMR (DMSO- d_6 , 9:1, 400 MHz) δ 10.04 (s, 1H), 8.45–8.40 (m, 2H, Ar–H), 8.30–8.20 (m, 2H, Ar–H), 5.77 (s, 4H, CH₂);¹³C NMR (D₂O, 9:1, 100 MHz) δ 48.8, 113.8, 127.4, 131.6, 143.7, 168.4. Anal.Calcd forC₁₁H₁₁BrN₂O₄⁻: C, 41.93; H, 3.52; N, 8.89; Found: C, 41.89; H, 3.55 N, 8.88.

3-(carboxymethyl)-1-methyl-1H-imidazol-3-ium (ZIL2) ¹H NMR (400 MHz, DMSO-*d*₆, ppm) δ : 3.90 (s, 3H), 5.12 (s, 2H), 7.57-7.74 (d, 2H,), 9.41 (s, 1H,); ¹³C NMR (100 MHz, D₂O, ppm) δ : 36.39, 50.07, 123.66, 124.13, 137.89, 168.58.Anal.Calcd for C₆H₉N₂O₂⁺: C, 51.06; H, 6.43; N, 19.85; Found: C, 51.01; H, 6.42 N, 19.84.

2-(1-methyl-1H-imidazol-3-ium-3-yl)ethanesulfonate (ZIL3). ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.74 (t, *J* = 1.8 Hz, 1H), 7.65 (s, 1H), 7.59 (s, 0H), 7.11 (s, 1H), 6.89 (d, *J* = 6.0 Hz, 1H), 4.33 (t, 1H), 2.93 (t, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 137.66, 123.57, 123.10, 50.74, 46.59, 36.12. Anal.Calcd forC₆H₁₀N₂O₃S: C, 37.88; H, 5.30; N, 14.37; Found: C, 37.76; H, 5.35 N, 14.33.

3,3'-((4-hydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (1). ¹H NMR (400 MHz, DMSO- D_6) δ 8.93 (s, 1H), 7.77 (d, J = 7.8 Hz, 2H), 7.45 (t, J = 7.8 Hz, 2H), 7.28 – 7.07 (m, 4H), 6.83 (d, J = 8.2 Hz, 2H), 6.52 (d, J = 8.7 Hz, 2H), 6.12 (s, 1H).¹³C NMR (100 MHz, DMSO- d_6) δ 168.07, 165.09, 155.14, 152.99, 132.81, 131.30, 128.04, 124.61, 123.33, 120.54, 115.92, 115.01, 104.32, 35.83.Anal.Calcd forC₂₅H₁₆O₇: C, 70.09; H, 3.76;. Found: C, 70.23; H, 3.69.

3,3'-(pyridin-2-ylmethylene)bis(4-hydroxy-2H-chromen-2-one) (2). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.12 (s, 1H), 7.75 (d, 2H), 7.41 (td, *J* = 7.3, 1.8 Hz, 2H), 7.16 (d, *J* = 7.9 Hz, 5H), 7.08 (d, *J* = 7.9 Hz, 1H), 6.83 (t, *J* = 7.6 Hz, 1H), 6.54 (d, 2H), 6.10 (s, 1H).¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.64, 164.67, 155.54, 152.86, 130.95, 129.61, 126.45, 124.47, 123.22, 120.75, 118.21, 115.79, 115.09, 104.24, 33.37.Anal.Calcd for C₂₄H₁₅NO₆: C, 69.73; H, 3.66;. N,3.39; Found: C, 69.65; H, 3.71; N, 3.44.

3,3'-((2-hydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (3). ¹H NMR (400 MHz, DMSO- d_6) δ 17.11 (s, 1H), 8.28 (d, J = 4.9 Hz, 1H), 8.12 (s, 2H), 7.74 (dd, J = 7.6, 2.1 Hz, 2H), 7.51 (dd, J = 7.9, 2.1 Hz, 1H), 7.48 – 7.42 (m, 2H), 7.23 – 7.14 (m, 4H), 7.11 (d, J = 7.9 Hz, 1H), 7.06 – 6.99 (m, 1H), 6.21 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 168.09, 165.05, 162.35, 153.04, 148.82, 136.26, 131.35, 124.60, 123.36, 121.43, 120.82, 120.53, 115.96, 103.89, 72.79, 39.92.Anal.Calcd for C₂₅H₁₆O₇: C, 70.09; H, 3.76; Found: C, 69.89; H, 3.78.

3,3'-((3-hydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (4) ¹H NMR (400 MHz, DMSO-*d*₆) δ 17.58 (s, 1H), 8.88 (s, 1H), 7.77 (dd, *J* = 7.6, 2.1 Hz, 2H), 7.45 (td, *J* = 8.5, 7.9, 2.1 Hz, 2H), 7.19 (dd, *J* = 15.0, 7.6 Hz, 4H), 6.88 (t, *J* = 7.9 Hz, 1H), 6.56 – 6.33 (m, 3H), 6.13 (s, 1H).¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.19, 165.08, 157.45, 153.01, 144.48, 131.39, 128.97, 124.66, 123.38, 120.50, 117.96, 115.96, 114.21, 112.34, 103.95, 36.55.Anal.Calcd for C₂₅H₁₆O₇: C, 70.09; H, 3.76;. Found: C, 70.14; H, 3.81.

3,3'-(pyridin-4-ylmethylene)bis(4-hydroxy-2H-chromen-2-one) (5). ¹H NMR (400 MHz, DMSO-d₆) δ

17.40 (s, 1H), 8.28 (d, 2H), 8.13 (s, 1H), 7.76 (dd, J = 7.9, 2.4 Hz, 2H), 7.54 – 7.41 (m, 2H), 7.27 – 7.12 (m, 4H), 7.02 (d, J = 4.9 Hz, 2H), 6.20 (s, 1H).¹³C NMR (100 MHz, DMSO- d_6) δ 168.35, 164.90, 153.09, 152.32, 149.59, 131.68, 124.69, 123.52, 122.77, 120.22, 116.08, 102.76, 36.48.Anal.Calcd for C₂₄H₁₅NO₆: C, 69.73; H, 3.66;. N,3.39; Found: C, 69.74; H, 3.59; N, 3.72.

3,3'-(pyridin-3-ylmethylene)bis(4-hydroxy-2H-chromen-2-one) (6) ¹H NMR (400 MHz, DMSO- d_6) δ 17.45 (s, 1H), 8.79 (s, 1H), 8.24 (dd, *J* = 6.7, 3.7 Hz, 2H), 7.77 (d, *J* = 7.9, 2H), 7.58 – 7.33 (m, 3H), 7.27 – 7.00 (m, 5H), 6.25 (s, 1H).¹³C NMR (100 MHz, DMSO- d_6) δ 168.31, 164.86, 153.07, 148.69, 146.55, 138.23, 134.99, 131.63, 124.64, 123.54, 123.51, 120.26, 116.07, 103.11, 34.76.Anal.Calcd for C₂₄H₁₅NO₆: C, 69.73; H, 3.66; N,3.39; Found: C, 69.61; H, 3.70; N, 3.36.

3,3'-((2-nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (7) ¹H NMR (400 MHz, DMSO- d_6) δ 16.72 (s, 1H), 8.79 (s, 1H), 7.71 (d, 2H), 7.51 – 7.41 (m, 4H), 7.30 (q, J = 7.3, 3.7 Hz, 2H), 7.18 (d, 4H), 6.43 (s, 1H).¹³C NMR (100 MHz, DMSO- d_6) δ 168.40, 164.01, 153.04, 150.09, 135.87, 131.91, 131.52, 130.09, 127.11, 124.60, 124.37, 123.44, 120.05, 116.03, 102.71, 34.40.Anal.Calcd for C₂₅H₁₅NO₈: C, 65.65; H, 3.31; N,3.06; Found: C, 65.61; H, 3.26; N, 3.05.

3,3'-((2,3-dihydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (8)¹H NMR (400 MHz, DMSOd₆) δ 12.38 (s, 1H), 8.81 (s, 2H), 7.75 (dd, *J* = 7.9, 1.8 Hz, 2H), 7.46 – 7.33 (m, 2H), 7.21 – 7.07 (m, 5H), 6.61 (d, *J* = 7.6 Hz, 1H), 6.48 (q, *J* = 7.9, 1.7 Hz, 1H), 6.35 (t, *J* = 7.8, 1.7 Hz, 1H), 6.12 (s, 1H).¹³C NMR (100 MHz, DMSO-d₆) δ 167.59, 164.64, 152.86, 144.66, 143.70, 130.86, 130.10, 124.48, 123.15, 120.81, 120.63, 117.53, 115.76, 113.05, 104.46, 33.41.Anal.Calcd for C₂₄H₁₅O₆: C, 67.57; H, 3.63;. Found: C, 67.49; H, 3.69.

3,3'-(phenylmethylene)bis(4-hydroxy-2H-chromen-2-one) (9) ¹H NMR (400 MHz, DMSO-*d*₆) δ 17.55 (s, 2H), 7.76 (d, *J* = 7.9 Hz, 2H), 7.45 (t, *J* = 7.9 Hz, 2H), 7.23 – 7.15 (m, 4H), 7.11 (t, *J* = 7.3 Hz, 2H), 7.06 – 6.98 (m, 3H), 6.22 (s, 1H).¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.22, 165.09, 153.02, 142.89, 131.43, 128.21, 127.16, 125.32, 124.64, 123.41, 120.45, 115.98, 103.92, 36.65.Anal.Calcd for C₂₅H₁₆O₆: C, 72.81; H, 3.91;. Found: C, 72.88; H, 3.88.

3,3'-((2,4-dihydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (**10**) ¹H NMR (400 MHz, DMSO- d_6) δ 8.69 (s, 1H), 7.74 (dd, J = 8.1, 1.7 Hz, 3H), 7.43 – 7.34 (m, 3H), 7.18 – 7.09 (m, 5H), 6.83 (d, J = 8.2 Hz, 1H), 6.02 (d, J = 2.7 Hz, 1H), 5.99 (s, 1H), 5.96 (dd, J = 8.2, 2.4 Hz, 1H).¹³C NMR (100 MHz, DMSO- d_6) δ 167.46, 164.66, 156.18, 156.07, 152.83, 130.80, 129.86, 124.44, 123.13, 120.85, 119.99, 115.74, 105.09, 104.69, 102.81, 32.63.Anal.Calcd for C25H16O8: C, 67.57; H, 3.63;. Found: C, 67.62; H, 3.59.

3,3'-((4-chlorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (**11**) ¹H NMR (400 MHz, chloroform-*D*) δ 17.17 (s, 1H), 8.04 (d, *J* = 7.3 Hz, 2H), 7.44 (td, *J* = 7.6, 1.8 Hz, 2H), 7.34 – 7.03 (m, 8H), 6.27 (s, 1H). ¹³C NMR (100 MHz, chloroform-*D*) δ 170.65, 167.43, 152.94, 139.53, 131.17, 131.3, 128.33, 128.26, 125.36, 123.41, 120.44, 115.68, 103.58, 36.42. Anal.Calcd for C₂₅H₁₅ClO₆: C, 67.20; H, Found: C, 67.25; H, 3.34.

3,3'-((3-nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (12): ¹H NMR (400 MHz, chloroform-D) δ 11.37 (s, 1H), 11.37 (s, 1H), 8.13 (dd, J = 7.6, 2.7 Hz, 1H), 8.10 – 8.03 (m, 2H), 8.01 – 7.95 (m, 1H), 7.65 (t, J = 7.9 Hz, 2H), 7.59 – 7.46 (m, 3H), 7.45 – 7.35 (m, 4H), 6.11 (s, 1H).¹³C NMR (101 MHz, chloroform-D) δ 169.23, 167.07, 166.68, 164.95, 152.67, 152.41, 148.80, 138.03, 133.45, 132.88, 129.69, 125.30, 125.25, 124.58, 122.23, 121.84, 116.94, 116.82, 116.76, 116.33, 104.68, 103.29, 36.25. Anal.Calcd for C₂₅H₁₅NO₈: C, 65.65; H, 3.31; N, 3.06. Found: C, 65.60; H, 3.35; N, 3.09.

3,3'-((2,4-dimethoxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one) (13) ¹H NMR (400 MHz, chloroform-*D*) δ 11.74 (s, 1H), 8.00 (d, *J* = 7.9 Hz, 2H), 7.58 (t, *J* = 7.9 Hz, 2H), 7.45 – 7.29 (m, 5H), 6.94 (d, *J* = 9.2 Hz, 1H), 6.60 (d, *J* = 9.2 Hz, 1H), 6.08 (s, 1H), 3.83 (s, 3H), 3.78 (s, 3H). ¹³C NMR (101 MHz, chloroform-*D*) δ 176, 164.07, 153.55, 153.09, 152.20, 132.20, 124.85, 124.37, 122.56, 121.17, 116.63, 106.49, 60.78.25, 60.43. 33.12. Anal.Calcd for C₂₇H₂₀O₈: C, 68.64; H, 4.27; Found: C, 68.60; H, 4.30.

3,3'-((4-oxo-4H-chromen-3-yl)methylene)bis(4-hydroxy-2H-chromen-2-one) (14) ¹H NMR (400 MHz, chloroform-*D*) δ 11.50 (s, 2H), 8.08 (d, *J* = 9.4 Hz, 1H), 8.01 (d, *J* = 8.3 Hz, 2H), 7.90 (d, *J* = 1.5 Hz, 1H), 7.68 – 7.56 (m, 3H), 7.44 (d, *J* = 8.5 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 5H), 5.99 (s, 1H). ¹³C NMR (100 MHz, chloroform-*D*) δ 177.00, 168.22, 164.52, 156.29, 153.51, 152.34, 133.83, 132.93, 125.99, 125.32, 125.00, 124.46, 123.48, 118.71, 118.05, 103.99, 30.58. Anal.Calcd for C₂₈H₁₆O₈: C, 70.00; H, 3.36; Found: C, 69.98; H, 3.39

Figure SF5. ¹H and ¹³C NMR of ZIL1

Figure SF6. ¹H and ¹³C NMR of ZIL2

Figure SF7. ¹H and ¹³C NMR of ZIL3

Figure SF8. H-H cosy and ¹³C NMR of 3,3'-((4-hydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF9. ¹H and ¹³C NMR of 3,3'-(pyridin-2-ylmethylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF10. ¹H and ¹³C NMR of 3,3'-((2-hydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF11. ¹H and ¹³C NMR of 3,3'-((3-hydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF12. ¹H and ¹³C NMR of 3,3'-(pyridin-4-ylmethylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF13. ¹H and ¹³C NMR of 3,3'-(pyridin-3-ylmethylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF14. ¹H and ¹³C NMR of 3,3'-((2-nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF15. ¹H and ¹³C NMR of 3,3'-((2,3-dihydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF16. ¹H and ¹³C NMR of 3,3'-(phenylmethylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF17. ¹H and ¹³C NMR of 3,3'-((2,4-dihydroxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF18. ¹H and ¹³C NMR of 3,3'-((4-chlorophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF19. ¹H and ¹³C NMR of 3,3'-((3-nitrophenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

Figure SF20. ¹H and ¹³C NMR of 3,3'-((2,4-dimethoxyphenyl)methylene)bis(4-hydroxy-2H-chromen-2-one)

11.8 11.6 11.4 11.2 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 6.2 6.0 5.8 f1 (ppm)

Figure SF21. ¹H and ¹³C NMR of 3,3'-((4-oxo-4H-chromen-3-yl)methylene)bis(4-hydroxy-2H-chromen-2-one)

References

- 1. H. Sharma, N. Singh and D. O. Jang, *Green Chem.*, 2014, **16**, 4922-4930.
- 2. M. R. Zanwar, M. J. Raihan, S. D. Gawande, V. Kavala, D. Janreddy, C.-W. Kuo, R. Ambre and C.-F. Yao, *J.Org. Chem.*, 2012, **77**, 6495-6504.
- 3. A. Montagut-Romans, M. Boulven, M. Lemaire and F. Popowycz, *New J. Chem.*, 2014, **38**, 1794-1801.
- 4. G. Cravotto, A. Demetri, G. M. Nano, G. Palmisano, A. Penoni and S. Tagliapietra, *Eur. J. Org. Chem.*, 2003, **2003**, 4438-4444.
- 5. D. Završnik, S. Muratović, D. Makuc, J. Plavec, M. Cetina, A. Nagl, E. D. Clercq, J. Balzarini and M. Mintas, *Molecules*, 2011, **16**, 6023-6040.
- 6. N. Hamdi, M. C. Puerta and P. Valerga, *Eur. Med. Chem*, 2008, **43**, 2541-2548.
- 7. I. Manolov, C. Maichle-Moessmer and N. Danchev, *Eur. J. Med. Chem.*, 2006, **41**, 882-890.
- 8. C.-X. Su, J.-F. Mouscadet, C.-C. Chiang, H.-J. Tsai and L.-Y. Hsu, *Chem.Pharm Bull.*, 2006, **54**, 682-686.
- 9. A. R. Karimi, Z. Eftekhari, M. Karimi and Z. Dalirnasab, *Synthesis*, 2014, **46**, 3180-3184.