Electronic Supplementary Information (ESI)

Copper(II) complexes with benzhydrazone-related ligands: synthesis, structural studies and cytotoxicity assay

Marina Cindrić, Alen Bjelopetrović, Gordana Pavlović, Vladimir Damjanović, Jasna Lovrić, Dubravka Matković-Čalogović and Višnja Vrdoljak

Contents

Scheme
Scheme S1 The structural formula of the tetranuclear complex $[Cu_4(L^{3OMe})_4]$ Scheme S2 Dinuclear $[Cu_2(L)_2(py)_2]$ and $[Cu_2(L)_2]$ complexes.
Powder X-ray diffraction patterns
Fig. 1 PXRD patterns for: 1py calculated from the X-ray single-crystal structure; 1py obtained by the solution-based method; 1 obtained by the solid-state thermally induced synthesis; 1 obtained by the conventional solution-based method.
Fig S2. PXRD patterns of sample obtained upon standing of 2a·4MeOH·2H ₂ O at room temperature for 5 min; and PXRD pattern of 2a·4MeOH·2H ₂ O calculated from the X-ray single-crystal structure.
X-Ray Crystallography. Single crystal diffraction4
Fig. S3. Layers of 2D infinite chains of rings in 2py·3H ₂ O structure
Fig. S4. Supramolecular assembling of $2py \cdot 3H_2O$ via hydrogen bonds between H ₂ O and complex molecules.
Fig. S5. Layers of 2D infinite chains of rings spreading along c axis in 3py structure
Fig. S6 . Partial crystal structure of 1phen (a) and 3phen (b) structures showing bifurcation at N2 proton acceptor of C-H \cdots N hydrogen bonds along <i>b</i> axis
Table S1. Selected bond lengths [Å] and angles [°] for complexes: 2py·3H ₂ O, 3py, 1bpy*·2MeOH and 2bpy.
Table S2. Selected bond lengths [Å] and angles [°] for mononuclear complexes: 3phen and 1phen.
Table S3. Selected bond lengths [Å] and angles [°] for tetranuclear complex $2a \cdot 4MeOH \cdot 2H_2O$
Table S4. Dihedral angles between best planes defined by chosen atoms (°) in complexes 3py, 2py·3H ₂ O, 1bpy*·2MeOH, 2bpy, 1phen, 3phen and 2a·4MeOH·2H ₂ O
Table S5. Hydrogen bonds and interactions for complexes: 3py, 2py·3H2O, 1bpy*·2MeOH ,2bpy, 1phen, 3phen and 2a·4MeOH·2H2O
Ligands12
Table S6. ¹ H and ¹³ C chemical shifts (ppm) of H_2L^H , H_2L^{3OMe} · H_2O and H_2L^{4OMe} · H_2O
Scheme S3 The structural formula of H_2L with the NMR numbering scheme

Scheme

Scheme S1 The structural formula of the tetranuclear complex $[Cu_4(L^{3OMe})_4]$

Scheme S2 Dinuclear $[Cu_2(L)_2(py)_2]$ (in the upper half of the Scheme) and $[Cu_2(L)_2]$ complexes (in the lower half of the Scheme). The R substituent is shown in red colour in Scheme 1.

Powder X-ray diffraction patterns

Fig. S1 PXRD patterns (form top to bottom) for: 1py calculated from the X-ray single-crystal structure (refcode UKEVEL01); 1py obtained by the solution-based method; 1 obtained by the solid-state thermally induced synthesis; 1 obtained by the conventional solution-based method.

Fig. S2 PXRD patterns of sample obtained upon standing of **2a**·**4**MeOH·**2**H₂O at room temperature for 5 min (top); and PXRD pattern of **2a**·**4**MeOH·**2**H₂O calculated from the X-ray single-crystal structure (bottom).

X-Ray Crystallography. Single crystal diffraction.

Fig. S3. Layers of 2D infinite chains of rings in 2py·3H₂O structure.

Fig. S4. Supramolecular assembling of 2py·3H₂O *via* hydrogen bonds between H₂O and complex molecules.

Fig. S5. Layers of 2D infinite chains of rings spreading along *c* axis in **3py** structure.

(b)

Fig. S6. Partial crystal structure of **1phen** (a) and **3phen** (b) structures showing bifurcation at N2 proton acceptor of C-H…N hydrogen bonds along *b* axis.

Complex	2py·3H₂O	Зру	1bpy*·2MeOH	2bpy		
		Bond distances				
Cu1–N1	1.927(2)	1.9265(19)	1.9248(15)	1.9227(16)		
Cu1–O1	1.943(2)	1.9425(17)	1.9370(14)	1.9144(15)		
Cu1–O2	1.906(2)	1.9086(18)	1.9033(14)	1.8752(15)		
Cu1–N3	2.008(2)	2.0091(19)	2.0039(15)	2.0228(17)		
Cu1–O2 ⁱ	2.515(2)	2.567(2)	2.6019(14)	-		
$Cu1\cdots Cu1^i$	3.367(1)	3.260(1)	3.348(1)	-		
N1-C8	1.293(3)	1.286(3)	1.290(2)	1.292(3)		
N1-N2	1.400(2)	1.392(3)	1.391(2)	1.397(2)		
N2C1	1.315(3)	1.309(3)	1.322(2)	1.320(3)		
O1–C1	1.293(3)	1.295(3)	1.289(2)	1.296(2)		
O2C10	1.320(3)	1.329(3)	1.320(2)	1.312(2)		
		Bond a	ngles			
N1-Cu1-O1	81.01(8)	81.00(8)	81.23(6)	81.53(7)		
N1-Cu1-O2	93.10(8)	92.27(7)	93.14(6)	94.03(7)		
O1–Cu1–O2	174.01(7)	172.83(7)	171.95(5)	174.91(6)		
N1–Cu1–O2 ⁱ	98.32(7)	100.13(7)	104.15(6)	-		
O1–Cu1–O2 ⁱ	100.14(6)	91.05(8)	90.49(5)	-		
O2–Cu1–O2 ⁱ	81.74(6)	87.69(8)	85.29(5)	-		
O2-Cu1-N3	92.89(8)	92.74(8)	92.69(6)	91.08(7)		
N1–Cu1–N3	169.69(8)	168.49(9)	167.75(7)	173.59(7)		
O1–Cu1–N3	92.89(8)	94.33(8)	93.94(6)	93.19(7)		
N3-Cu1-O2 ⁱ	90.85(8)	90.42(6)	87.06(5)			
τ parameter*	0.07	0.07	0.07	-		

Table S1. Selected bond lengths [Å] and angles [°] for complexes: $2py \cdot 3H_2O$, 3py, $1bpy*\cdot 2MeOH$ and 2bpy.

Symmetry code: **2py**·**3H**₂**O**: (i):-x+1,-y+1, -z+1; **3py**: i =2-x,1-y,-z; **1bpy***·**2MeOH**: i =2-x,-y,2-z.

*Ideal τ (calculated as (\angle (O1–Cu1–O2) – \angle (N1–Cu1–N3)]/60°) is 0 and 1 for the perfect square pyramid and trigonal bipyramid geometries, respectively.

Complex	ex 3phen 1p	
	Bond length	
Cu1–N1	1.911(3)	1.914(6)
Cu1–O1	1.989(3)	1.987(5)
Cu1–O2	1.917(3)	1.931(6)
Cu1–N3	2.013(3)	2.012(6)
Cu1-N4	2.266(3)	2.271(7)
N1–C8	1.292(5)	1.272(9)
N1-N2	1.387(4)	1.406(8)
N2C1	1.319(4)	1.306(9)
O1–C1	1.301(4)	1.295(9)
O2–C10	1.301(4)	1.293(10)
	Bond angles	
N1–Cu1–O1	80.81(12)	81.3(2)
N1–Cu1–O2	92.85(13)	92.0(2)
O1–Cu1–O2	161.01(10)	158.5(2)
O2-Cu1-N3	88.87(12)	87.5(2)
N1–Cu1–N3	178.27(14)	179.4(3)
O1–Cu1–N3	97.58(11)	99.2(2)
N1-Cu1-N4	101.91(11)	101.5(2)
O2-Cu1-N4	99.94(11)	101.7(2)
O1-Cu1-N4	98.88(10)	99.7(2)
N3-Cu1-N4	77.68(11)	78.2(3)
au parameter*	0.29	0.35

 Table S2. Selected bond lengths [Å] and angles [°] for mononuclear complexes: 3phen and 1phen.

*Ideal τ (calculated as (\angle (O1–Cu1–O2) – \angle (N1–Cu1–N3)]/60°) is 0 and 1 for the perfect square pyramid and trigonal bipyramid geometries, respectively.

Complex	2a·4MeOH·2H ₂ O
Bond dista	nces
Cu1–O11	1.922(5)
Cu1–N11	1.930(5)
Cu1012	1.940(5)
Cu1–O22	1.979(5)
Cu1–O23	2.281(5)
Cu1–O12 ⁱ	2.716(5)
Cu2-N21	1.909(7)
Cu2-O21	1.931(5)
Cu2–O22 ⁱ	1.970(4)
Cu2012	2.004(4)
Cu2013	2.306(5)
Cu2–O22	2.653(5)
Bond ang	les
011–Cu1–N11	82.2(2)
O11-Cu1-O12	173.7(2)
N11-Cu1-O12	92.9(2)
O11–Cu1–O22	96.1(2)
N11-Cu1-O22	172.0(2)
O12–Cu1–O22	88.19(19)
O11–Cu1–O23	87.3(2)
N11-Cu1-O23	111.9(2)
O12–Cu1–O23	98.2(2)
O22–Cu1–O23	75.72(18)
N21-Cu2-O21	82.1(2)
N21–Cu2–O22 ⁱ	91.8(2)
O21-Cu2-O22 ⁱ	172.5(2)
N21-Cu2-O12	172.0(2)
O21–Cu2–O12	96.2(2)
O22-Cu2-O12 ⁱ	89.30(19)
N21-Cu2-O13	112.8(2)
O21-Cu2-O13	89.2(2)
O22-Cu2-O13 ⁱ	97.25(19)
<u>012–Cu2–O13</u>	74.95(18)

Table S3. Selected bond lengths [Å] and angles [°] for tetranuclear complex $2a \cdot 4MeOH \cdot 2H_2O$

_

i: -x,y,1/2-z

Table S4. Dihedral angles between best planes defined by chosen atoms (°) in complexes 3py, 2py·3H₂O, 1bpy*·2MeOH, 2bpy, 1phen and 3phen

Ζ	Зру	2py·3H ₂ O	1bpy*·2MeOH	2bpy	1phen	3phen
I,II	18.16(8)	18.49(14)	4.2(1)	3.9(1)	17.8(5)	11.7(2)
I,III	20.63(7)	15.98(15)	4.0(1)	7.8(1)	15.9(4)	10.4(2)
I,IV	18.93(8)	9.51(15)	8.2(1)	6.0(2)	12.2(5)	9.7(2)
II,III	11.30(7)	3.99(17)	1.0(1)	3.9(1)	3.3(5)	2.7(2)
III, IV		15.31(15)	9.3(1)	1.9(2)	8.9(6)	
I,V	51.82(9)	15.60(11)	-	-	70.4(2)	75.3(2)
II,V	50.51(8)	13.53(11)	-	-	87.6(2)	86.9(2)

Atoms define planes:

I: C2-C7

II: C9-C14

III: six-membered chelate ring atoms: O2,N1,C8,C9,C10

IV: five-membered chelate ring atoms: O1,N1,N2,C1

V: py ring atoms in pyridine dinuclear complexes and 1,10-phen ring atoms in **1phen** and **3phen** complexes.

Table S5. Hydrogen bonds and interactions for complexes: 3py, 2py·3H2O, 1bpy*·2MeOH, 2bpy,1phen, 3phen and 2a·4MeOH·2H2O

D- H···A	d(D-H)	d(H···A)	d(D····A)	<(DHA)	Symmetry code	
			Зру			
C17-H17N2	0.93	2.537	3.452(3)	168	x,+y+1,+z	
C15–H15…O1	0.93	2.415	2.974(3)	119	-	
С19-Н19…О2	0.93	2.363	2.912(3)	118	-	
		2ру	·3H ₂ O			
O1W-H11A…N2	0.97	1.920	2.884(4)	171	-	
O1W–H11B···O2W	0.89(7)	2.13(6)	2.650(18)	117(5)	-	
O1W–H11A…N1	0.97	2.839	3.737(4)	154	-	
C7–H7···O1W	0.95	2.648	3.480(5)	147	-	
C8−H8···O2W	0.95	2.788	3.690(19)	159	-x+2, -y+2, -z+1	
C19-H19…O1W	0.95	2.820	3.751(5)	167	x-1,y,z	
C16–H16…O1	0.95	2.330	2.912(3)	119	-	
C20–H20····O2	0.95	2.380	2.920(3)	116	-	
C15–H15B…N2	0.98	2.885	3.846(4)	167	-x+1,-y+2,-z+1	
C17–H17…O1	0.95	2.857	3.806(3)	177	-x+1,+y-1/2,-z+3/2	
		1bpy*	·2MeOH		· · ·	
O3–H3O…N2	0.83(2)	2.02(2)	2.832(2)	167(2)	-	
O3–H3O⋯N1	0.83(2)	2.82(2)	3.495(2)	140(2)	-	
С5–Н5…О3	0.95	2.628	3.504(3)	154	-x+3/2,+y+1/2,-z+3/2	
C16–H16…O3	0.95	2.663	3.331(3)	128	x-1,+y,+z	
С19-Н19…О2	0.95	2.317	2.883(2)	118	-	
C15–H15…O1	0.95	2.359	2.941(2)	119	-	
С8–Н8…О3	0.95	2.770	3.376(2)	122	-	
C18–H18…O3	0.95	2.512	3.504(3)	122	-x+2,-y,-z+2	
		2	bpy			
С16-Н16…О2	0.93	2.300	2.852(3)	118	-	
C20–H20····O1	0.93	2.357	2.928(3)	119	-	
C13–H13…N2	0.93	2.804	3.524(3)	135	-x+1,+y-1/2,-z+3/2	
C16–H16…O3	0.93	2.856	3.391(3)	118	-x+1/2,+y,-z+1	
C17–H17···O3	0.93	2.632	3.275(3)	127	-x+1/2,+y,-z+1	
C15–H15B…O3	0.93	2.717	3.447(3)	133	-x+1/2,+y,-z+1	
		1	ohen		· •	
C8–H8····O1	0.93	2.805	3.63(1)	148	x,-y,+z+1/2	
	0.00			1.60	x+1/2 - y+1/2 + z+1/2	
C12–H12…N4	0.93	2.912	3.81(1)	162	X + 1/2, -y + 1/2, + 2 + 1/2	
C19–H19…N2	0.93	2.697	3.32(1)	126	x,+y+1,+z	
C20–H20…N2	0.93	2.772	3.37(1)	123	x,+y+1,+z	
3phen						
C5–H5…N4	0.93	2.963	3.790(5)	149	-x+1, $+v-1/2$, $-z+1/2$	
C20–H20····N2	0.93	2.721	3.381(5)	129	$x_{y+y+1} + z_{z}$	
C21–H21…N2	0.93	2.857	3.450(5)	123	x,+y+1,+z	
C8–H8…O1	0.93	2.825	3.616(5)	144	x, -y+1/2, +z-1/2	
C15B–H15D…O3	0.96	2.710	3.430(15)	132	-x, -y+1, -z-1	
C16–H16…O3	0.93	2.981	3.559(6)	122	-x, -y+1, -z	
<u>C17–H17…O3</u>	0.93	2.797	3.455(7)	129	-x, -y+1, -z	
2a·4MeOH·2H ₂ O						

I4−H114…N22 0	.95 2.620	3.556(10) 168	-x,1+y,1/2-z
13–H113····O1ME 0	.95 2.686	3.41(3) 134	-
I5−H11B····O1W 0	.98 2.974	3.57(6) 120	-
1–H14… O1ME 0	.95 2.964	3.78(3) 145	x+1/2,-y+1/2+2,+z+1/2
I–H14…O1W 0	.95 2.957	3.88(5) 165	-x,+y+1,-z+1/2
5-Н26…О21 0	.95 2.892	3.80(1) 159	-x,-y+1,-z
I3−H113…O1W 0	.95 2.810	3.60(6) 141	-x-1/2,-y+1/2+1,-z
4–H114···N22 0	.95 2.622	3.56(1) 168	x,+y+1,+z
3-H113····O1W 0 4-H114····N22 0	.95 2.810 .95 2.622	3.60(6) 141 3.56(1) 168	-x-1/2,-y+1/2+1,-z x,+y+1,+z

Ligands

	H_2L^H		H_2L^{3OMe} · H_2O		$H_2L^{4OMe.}H_2O$	
Atom	<i>δ</i> /ppm (¹ H)	<i>δ</i> /ppm (¹³ C)	δ / ppm (¹ H)	δ / ppm (¹ H)	δ / ppm (¹ H)	δ / ppm (¹³ C)
α	8.69	148.86	8.68	148.42	8.57	149.33
1	—	119.15	-	119.39	_	112.23
2	-	157.99	-	148.42	_	159.93
3	6.93	119.82	_	147.67	6.52	101.66
4	7.33	131.84	7.17	121.31	_	162.56
5	6.97	116.92	6.88	119.51	6.55	106.96
6	7.58	130.07	7.05	114.29	7.44	131.67
1'	12.16	_	12.11	-	12.02	-
2'	-	163.35	-	163.30	_	163.09
3'	-	133.29	-	133.33	_	133.38
4', 8'	7.99	128.14	7.96	128.12	7.94	128.06
5', 7'	7.56	129.03	7.55	129.03	7.55	129.01
6'	7.64	132.46	7.62	132.45	7.61	132.35
ОН-2	11.37	_	11.02	-	11.66	_
OMe			3.38	56.29	3.37	55.79

Table S6. ¹H and ¹³C chemical shifts (ppm) of H_2L^H , H_2L^{3OMe} , H_2O and H_2L^{4OMe} , H_2O

\mathbb{R}^1	R ²	ligand
Н	Н	H_2L^H
OCH_3	Н	$H_2L^{3OMe.}H_2O$
Н	OCH_3	$H_2L^{4OMe.}\mathrm{H_2O}$

Scheme S3 The structural formula of H_2L with the NMR numbering scheme