ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Title:Singlet ground state in compounds with $\left[\mathrm{Mn}^{\mathrm{II}}{ }_{4} \mathrm{O}_{2}\right]^{8+}$ core due to broken degeneration
Authors:
Luis Escriche-Tur, Belén Albela, Mercè Font-Bardia, Montserrat Corbella.
Content:
Table S1. Crystallographic data S2
Figure S1. Crystal structure of $\mathbf{1}$ and $\mathbf{2}$ S2
Table S2. Selected structural parameters of 1 S3
Table S3. Selected structural parameters of 2 S3
Table S4. Axes lengths and elongation and rhombicity parameters S4
Figure S2. Fits of the magnetic data using different approximations S4
Figure S3. Simulated curves considering an average value between J_{2} and J_{3} S4
Table S5. Structural parameters for $\left[\mathrm{Mn}_{2} \mathrm{O}_{2}\right]^{8+}$ subunits S5
Table S6. Structural parameters for $\left[\mathrm{Mn}_{2} \mathrm{O}(\mathrm{RCOO})_{2}\right]^{2+}$ subunits S5
Table S7. Structural parameters for $\left[\mathrm{Mn}_{2} \mathrm{O}(\mathrm{RCOO})\right]^{3+}$ subunits S5

Table S1. Crystal data and structure refinement details for compound 1.

	1-1/2EtOH $5 / 4 \mathrm{CH}_{3} \mathrm{CN} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$	$2.2 \mathrm{CH}_{3} \mathrm{CN}^{*}$
Formula	$\mathrm{C}_{167} \mathrm{H}_{144.50} \mathrm{Cl}_{2} \mathrm{Mn}_{8} \mathrm{~N}_{10.50} \mathrm{O}_{55.50}{ }^{\text {a }}$	$\mathrm{C}_{192} \mathrm{H}_{210} \mathrm{Cl}_{4} \mathrm{Mn}_{8} \mathrm{~N}_{14} \mathrm{O}_{46}$
Fw (g/mol)	3696.84	4031.05
Crystal color, habit	red, prism	Red, thin plate
T (K)	100(2)	100
$\lambda(\mathrm{Mo} \mathrm{K} \alpha$) / \AA	0.71073	0.71073
Crystal size (mm)	$0.62 \times 0.25 \times 0.23$	$0.23 \times 0.20 \times 0.03$
Crystal system	Triclinic	Monoclinic
Space group	P1	P21/c
$a /$ Å	16.254(3)	27.685(3)
b / Å	16.408(3)	19.1531(18)
$c / A ̊$	17.493(3)	18.3634(16)
$\alpha /{ }^{\circ}$	111.443(6)	90
$\beta /^{\circ}$	93.798(6)	91.828(3)
$\gamma 1^{\circ}$	103.048(6)	90
v / \AA^{3}	4172.9(13)	9732.3(16)
Z	1	2
$\rho_{\text {calcd }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.471	1.376
μ / mm^{-1}	0.708	0.637
F(000)	1897	4192
θ range / ${ }^{\circ}$	2.21 to 26.88	2.10 to 30.72
Completeness to $\theta_{\text {max }}$	99.7\%	98.0\%
Index ranges	$h=-20 \rightarrow 20$	$h=-39 \rightarrow 39$
	$k=-20 \rightarrow 20$	$k=-23 \rightarrow 27$
	$1=-22 \rightarrow 22$	$I=-26 \rightarrow 24$
Data/restraints/parameters	34398/75/2243	29671/3/553
GooF on F^{2}	1.105	1.531
$\mathrm{R}_{1}{ }^{c}, \omega \mathrm{R}^{\text {d }}{ }^{\text {[}}$ I $\left.>2 \sigma(/)\right]$	0.0397, 0.1060	0.1949, 0.4709
$\mathbf{R}_{1}{ }^{c}, \omega \mathrm{R}_{2}{ }^{\text {d }}$ (all data)	0.0428, 0.1104	0.3236, 0.5161

${ }^{a} 2$ eq. of $\mathbf{1} \cdot 1 / 2 \mathrm{EtOH} \cdot 5 / 4 \mathrm{CH}_{3} \mathrm{CN} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O}$; b 2 eq. of $\mathbf{2} \cdot 2 \mathrm{CH}_{3} \mathrm{CN}^{c} \mathrm{R}_{1}=\sum\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\left|/ \sum\right| F_{\mathrm{o}} \mid ;{ }^{d} \omega \mathrm{R}_{2}=\left\{\sum\left[\omega\left(F_{\mathrm{o}}{ }^{2}-F_{\mathrm{c}}{ }^{2}\right)^{2}\right] /\right.$ $\left.\sum\left[\omega\left(F_{0}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}, \omega=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(a P)^{2}+b P\right]$, where $P=\left[\max \left(F_{0}{ }^{2}, 0\right)+2 F_{c}{ }^{2}\right] / 3 .{ }^{*}$ NOTE: This structure was only isotropically refined. The crystal was poorly diffracting and could not be refined completely. Therefore, it was neither deposited in the CCDC database.

Figure S1. Crystal structure of the cationic complex of $\mathbf{1}$ and $\mathbf{2} .4-\mathrm{RC}_{6} \mathrm{H}_{4}-$ groups and H atoms of phen ligands have been omitted for better clarity. Color code: Mn'II, brown; C, grey; N, blue; O, red. The Crystal structure of $\mathbf{2}$ could not be fully refined due to poor statistics of its measurement.

Table S2. Selected interatomic distances (Å) and angles (deg) for compound $\mathbf{1}$ with standard deviations in parentheses.

Mn1-01	1.834(3)	Mn5-027	1.944(3)
Mn1-O3	2.144(3)	Mn5-024	1.901(3)
Mn1-05	1.940(3)	Mn5-025	1.904(3)
Mn1-07	2.124(3)	Mn5-038	2.110(4)
Mn1-N1	2.079(4)	Mn5-O29	2.174(4)
Mn1-N2	2.061(4)	Mn5-O32	1.928(3)
Mn2-01	1.909(3)	Mn6-O24	1.898(3)
Mn2-02	1.908(3)	Mn6-034	1.932(3)
Mn2-04	1.961(3)	Mn6-O25	1.901(3)
Mn2-06	2.171(3)	Mn6-031	1.968(3)
Mn2-09	1.962(3)	Mn6-O36	2.204(3)
Mn2-015	2.147(3)	Mn6-039	2.246(3)
Mn3-01	1.898(3)	Mn7-N5	2.083(3)
Mn3-02	1.897(3)	Mn7-024	1.834(3)
Mn3-08	1.966(3)	Mn7-O26	2.194(3)
Mn3-011	1.946(3)	Mn7-028	1.939(3)
Mn3-013	2.213(4)	Mn7-N6	2.064(4)
Mn3-016	2.201(4)	Mn7-030	2.141(3)
Mn4-O2	1.833(3)	Mn8-033	2.181(3)
Mn4-010	2.145 (3)	Mn8-035	2.178(3)
Mn4-012	2.153(3)	Mn8-037	1.911(3)
Mn4-014	1.942(4)	Mn8-N7	2.070(5)
Mn4-N3	2.093(4)	Mn8-N8	2.076(3)
Mn4-N4	2.050(4)	Mn8-O25	1.846(3)
Mn2 $\cdots \mathrm{Mn} 3$	2.860(1)	Mn5 \cdots Mn6	2.839(1)
Mn1 $\cdots \mathrm{Mn} 2$	3.309(1)	Mn5 $\cdots \mathrm{Mn} 7$	3.284(1)
Mn1 $\cdots \mathrm{Mn} 3$	3.362(1)	Mn6 $\cdots \mathrm{Mn} 7$	3.409(1)
Mn2 $\cdots \mathrm{Mn} 4$	3.355(1)	Mn5 \cdots Mn8	3.381(1)
Mn3 \cdots Mn4	3.303(1)	Mn6 \cdots Mn8	3.332(1)
Mn1 $\cdots \mathrm{Mn} 4$	5.525(1)	Mn7 $\cdots \mathrm{Mn} 8$	5.693(1)
O1-Mn1-N2	170.47(17)	O24-Mn5-O32	171.56(14)
O3-Mn1-O7	172.02(13)	O25-Mn5-027	173.00(15)
O5-Mn1-N1	169.47(14)	O29-Mn5-O38	173.55(13)
O6-Mn2-O15	176.65(13)	O25-Mn6-O31	170.50(15)
O1-Mn2-09	172.63(14)	O36-Mn6-O39	172.72(12)
O2-Mn2-O4	176.14(15)	O24-Mn6-034	175.16(15)
O1-Mn3-O11	174.01(15)	O24-Mn7-N6	168.55(17)
O2-Mn3-08	171.57(15)	O26-Mn7-O30	170.92(13)
O13-Mn3-016	176.46(13)	O28-Mn7-N5	170.84(14)
$\mathrm{O} 2-\mathrm{Mn} 4-\mathrm{N} 4$	170.18(17)	O33-Mn8-035	170.25(13)
$\mathrm{O} 10-\mathrm{Mn} 4-\mathrm{O} 12$	170.43(13)	O37-Mn8-N7	169.13(17)
O14-Mn4-N3	168.83(14)	O25-Mn8-N8	171.81(15)
Mn1-O1-Mn3	128.51(18)	Mn6-O24-Mn7	132.00(18)
Mn1-O1-Mn2	124.17(16)	Mn5-O24-Mn7	123.10(18)
Mn2-O1-Mn3	97.38(14)	Mn5-O24-Mn6	96.77(14)
Mn2-O2-Mn3	97.47(14)	Mn5-O25-Mn6	96.55(14)
$\mathrm{Mn} 2-\mathrm{O} 2-\mathrm{Mn} 4$	127.50(17)	Mn5-O25-Mn8	128.76(19)
$\mathrm{Mn} 3-\mathrm{O} 2-\mathrm{Mn} 4$	124.63(19)	Mn6-O25-Mn8	125.58(17)
$\mathrm{Mn} 2-\mathrm{O} 1-\mathrm{O} 2-\mathrm{Mn} 3$	166.6(2)	Mn5-O25-O24-Mn6	169.2(2)
Mn1-Mn3 \cdots Mn2-O1	15.5(1)	Mn8 \cdots Mn6 \cdots Mn5-025	14.7(1)
Mn4-Mn2 \cdots Mn3-O2	15.9(1)	Mn7 \cdots Mn5 \cdots Mn6-024	13.9(1)
O15-Mn2 $\cdots \mathrm{Mn} 1-07$	85.5(1)	O33-Mn8 \cdots Mn6-039	89.8(1)
O16-Mn3 $\cdots \mathrm{Mn} 4-\mathrm{O} 10$	82.6(1)	O38-Mn5 $\cdots \mathrm{Mn} 7-\mathrm{O} 30$	91.7(1)

Table S3. Selected interatomic distances (Å) and angles (deg) for compound $\mathbf{2}$ with standard deviations in parentheses. NOTE: The crystal structure of $\mathbf{2}$ could not be completely refined due to poor quality of the crystallographic data. The following structural parameters should never be used for magnetostructural correlations, neither as precise values.

Mn1-01	1.870(6)	Mn3-N4	2.043(8)
Mn1-02	1.912(6)	Mn3-09	1.923(6)
Mn1-04	2.142(7)	Mn3-011	2.083(6)
Mn1-07	2.208(6)	Mn3-08	1.855(6)
Mn1-N1	2.039(8)	Mn3-N3	2.037(8)
Mn1-N2	2.036(8)	Mn3-014	2.219(6)
Mn2-01	1.860(6)	Mn4-O8b	1.919(6)
Mn2-O3	2.162(6)	Mn4-015	2.216(6)
Mn2-O5	1.945(7)	Mn4-012	1.936(6)
Mn2-N5	2.355(8)	Mn4-08	1.890(6)
Mn2-O1a	1.919(6)	Mn4-O13b	1.935(6)
Mn2-06a	1.913(6)	Mn4-010	2.143(6)
O1-Mn1-N1	169.7(3)	O8-Mn3-N3	168.6(3)
O4-Mn1-07	168.0(3)	O9-Mn3-N4	170.2(3)
O2-Mn1-N2	171.2(3)	O11-Mn3-014	170.9(2)
O1-Mn2-06a	171.6(3)	O8-Mn4-O13b	171.7(2)
O3-Mn2-N5	169.5(3)	O10-Mn4-O15	171.2(2)
O1a-Mn2-O5	175.7(3)	O8b-Mn4-012	173.2(2)
Mn1-O1-Mn2	122.0(3)	Mn3-O8-Mn4	120.4(3)
Mn1-O1-Mn2a	125.7(3)	Mn3-O8-Mn4b	125.9(3)
Mn2-O1-Mn2a	98.8(3)	Mn4-O8-Mn4b	98.7(3)
Mn2-01-01a-Mn2a	180	Mn4-O8-08b-Mn4b	180
Mn1-Mn2-Mn2a-O1	18.9(3)	Mn3-Mn4-Mn4b-O8	19.8(3)
N5-Mn2-Mn1-07	98.1(2)	O15-Mn4-Mn3-O14	97.5(2)

Symmetry codes: (a) $1-x, 1-y,-z$; (b) $-x, 1-y, 1-z$.

Table S4 x, y, and z axes length and the elongated (Δ) and rhombic distortion (ρ) of each Mn ion for compounds 1 and 2.

Compound	Mn centre	$x /$ Å	y / \AA	$z /$ Å	$\Delta / \%$	$\rho / \%$
1	Mn1	3.895	4.019	4.267	7.8	3.2
	Mn2	3.87	3.87	4.319	11.6	0.0
	Mn3	3.862	3.843	4.414	14.6	-0.5
	Mn4	3.883	4.035	4.297	8.5	3.9
	Mn5	3.827	3.846	4.283	11.6	0.5
	Mn6	3.83	3.868	4.449	15.6	1.0
	Mn7	3.898	4.021	4.334	9.5	3.2
	Mn8	3.923	3.98	4.36	10.3	1.5
2*	Mn1	~3.90	~ 3.95	~ 4.34	~ 11	~ 1
	Mn2	~3.78	~3.85	~ 4.50	~ 18	~ 2
	Mn3	~3.90	~3.96	~ 4.31	~ 10	~ 2
	Mn 4	~3.83	~3.85	~ 4.36	~ 14	~ 1

$\Delta=(z-\bar{x} y) / \bar{x} y, \bar{x} y=(x+y) / 2 ; \rho=(y-x) / x$. * The Crystal structure of $\mathbf{2}$ could not be fully refined due to poor statistics of its measurement.

Figure S2. Results from different fits of the $\chi_{M} T$ versus T plots of compounds $\mathbf{1}$ (red) and $\mathbf{2}$ (blue). The solid lines correspond to the fit to the experimental data considering $J_{2}=J_{3}$, omitting or including $D_{M n}$ (Fit 1 and 2, respectively), and considering $J_{2} \neq J_{3}$ (Fit 3). The molecular weight of 2 was referred to one Mn_{4} unit, considering an average formula between the two entities.

Figure S3. Experimental (open circles) and simulated (straight lines) $\chi_{M} T$ versus T and χ_{M} versus T (inset) plots for compounds 1 (red) and 2 (blue). The simulation was performed with $2 J_{1}$ and $D_{M n}$ values obtained from the fit and with the average value between $2 J_{2}$ and $2 J_{3}\left(-9.7 \mathrm{~cm}^{-1}\right.$ for 1 and $-11.5 \mathrm{~cm}^{-1}$ for 2). The molecular weight of $\mathbf{2}$ was referred to one Mn_{4} unit, considering an average formula between the two entities.

Table S5. Comparison of the average core parameters, distances (\AA) and angles (deg), for the $\left[\mathrm{Mn}^{\prime \prime \prime{ }_{2}} \mathrm{O}_{2}\right]^{8+}$ subunits of the several $\left[\mathrm{Mn}^{1 \mathrm{II}} \mathrm{O}_{2}\right]^{8+}$ compounds.

Compound	$\mathrm{Mn}_{\mathrm{c}} \cdots \mathrm{Mn}_{\mathrm{c}}$	$\mathrm{Mn}_{\mathrm{c}}-\mathrm{O}_{\mathrm{b}}-\mathrm{Mn}_{\mathrm{c}}$	$\begin{aligned} & \mathrm{Mn}_{\mathrm{c}}-\mathrm{O}_{\mathrm{b}}-\mathrm{O}_{\mathrm{b}}- \\ & \mathrm{Mn}_{\mathrm{c}} \end{aligned}$	$\begin{aligned} & 2 J_{1} \\ & / \mathrm{cm}^{-1} \end{aligned}$	Ref.
1	2.849	97.1	168	-45.5	This work
2*	~ 2.88	~99	180	-43.0	This work
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{6}(\mathrm{bpy})_{2}\right]^{+}$	2.847	97.2	169	-33.0	
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{7}(\mathrm{bpya})_{2}\right]^{+}$	2.871	97.2	170	-51.4	2
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{7}(\mathrm{bpy})_{2}\right]^{+}$	2.848	96.3	167	-47.0	3
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{7}(\mathrm{pic})_{2}\right]^{-}$	2.842	96.6	165	-49.2	4
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{py})_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{6}(\mathrm{dbm})_{2}\right]$	2.875	99.1	180	-29.8	5
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{dpm})_{2}\right]$	2.841	98.5	179	-55.0	6

Abbreviations: bpya $=$ bis(2-pyridyl)amine, bpy $=2,2^{\prime}$-bipyridine, pic $=$ picolinate, $\mathrm{py}=$ pyridine, $\mathrm{dbmH}=$ dibenzoylmethane, dpmH = dipivaloylmethane; see Eq. 1 and Figure 5 for the J assignment. * The crystal structure of $\mathbf{2}$ could not be fully refined due to poor statistics of its measurement.

Table S6. Comparison of the average core parameters, distances (A) and angles (deg), for the $\left[\mathrm{Mn}_{2} \mathrm{O}(\mathrm{RCOO})_{2}\right]^{2+}$ subunits of the several $\left[\mathrm{Mn}^{\text {III }}{ }_{4} \mathrm{O}_{2}\right]$ compounds.

Compound	$\mathbf{M n}_{\mathrm{c}} \cdots \mathrm{Mn}_{\mathrm{t}}$	$\mathbf{M n}_{\mathrm{c}}-\mathrm{O}_{\mathrm{b}}-\mathrm{Mn}_{\mathrm{t}}$	$\mathrm{L}-\mathrm{Mn}_{\mathrm{c}} \cdots \mathrm{Mn}_{\mathrm{t}}-\mathrm{L}$	$2 \mathrm{~J}_{2} / \mathrm{cm}^{-1}$	Ref.
1	3.307	124.4	87.4	-15.1/-4.4	This work
2*	~3.26	~ 121	~99	-14.7/-8.2	This work
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{6}(\mathrm{bpy})_{2}\right]^{+}$	3.258	121.8	74.1	-3.4	1
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{7}(\mathrm{bpya})_{2}\right]^{+}$	3.307	126.1	92.6	-6.6	2
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{7}(\mathrm{bpy})_{2}\right]^{+}$	3.301	123.7	82.5	-15.6	3
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{7}(\text { pic })_{2}\right]^{-}$	3.311	125.0	82.3	-10.6	4
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{py})_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{6}(\mathrm{dbm})_{2}\right]$	3.308	123.2	105.1	-10.0	5
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{dpm})_{2}\right]$	3.255	120.1	70	-0.8	6

$\mathrm{L}-\mathrm{Mn}_{\mathrm{c}} \cdots \mathrm{Mn}_{\mathrm{c}}-\mathrm{L}=$ torsion angle between the two Jahn-Teller axes. Abbreviations: bpya $=$ bis(2-pyridyl)amine, bpy = 2, 2^{\prime}-bipyridine, pic $=$ picolinate, $\mathrm{py}=$ pyridine, $\mathrm{dbmH}=$ dibenzoylmethane, $\mathrm{dpmH}=$ dipivaloylmethane. See Eq. 1 and Figure 5 for the J assignment.

* The crystal structure of $\mathbf{2}$ could not be fully refined due to poor statistics of its measurement.

Table S7. Comparison of the average core parameters, distances (\AA) and angles (deg), for the $\left[\mathrm{Mn}_{2} \mathrm{O}(\mathrm{RCOO})\right]^{3+}$ unit of the several $\left[\mathrm{Mn}^{\text {III }}{ }_{4} \mathrm{O}_{2}\right.$] complexes.

Compound	$\mathbf{M n}_{\mathbf{c}} \cdots \mathrm{Mn}_{\mathrm{t}}$	$\mathrm{Mn}_{\mathrm{c}}-\mathrm{O}_{\mathrm{b}}-\mathrm{Mn}_{\mathrm{t}}$	$2 \mathrm{~J}_{3} / \mathrm{cm}^{-1}$	Ref.
1	3.377	129.2	-15.1/-4.4	This work
2*	~3.37	~ 126	-14.7/-8.2	This work
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{NO}_{3}\right)\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{6}(\mathrm{bpy})_{2}\right]^{+}$	3.34	126.4	-3.4	1
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CEt}\right)_{7}(\mathrm{bpya})_{2}\right]^{+}$	3.444	130.7	-6.6	2
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{7}(\mathrm{bpy})_{2}\right]^{+}$	3.378	130.2	-15.6	3
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{7}(\mathrm{pic})_{2}\right]^{-}$	3.396	129.7	-10.6	4
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}(\mathrm{py})_{2}\left(\mathrm{O}_{2} \mathrm{CMe}\right)_{6}(\mathrm{dbm})_{2}\right]$	3.398	128.6	-10.0	5
$\left[\mathrm{Mn}_{4} \mathrm{O}_{2}\left(\mathrm{O}_{2} \mathrm{CPh}\right)_{6}(\mathrm{dpm})_{2}\right]$	3.362	126.0	-0.8	6

Abbreviations: bpya = bis(2-pyridyl)amine, bpy = 2,2'-bipyridine, pic = picolinate, $\mathrm{py}=$ pyridine, $\mathrm{dbmH}=$ dibenzoylmethane, dpmH $=$ dipivaloylmethane; see Eq. 1 and Figure 5 for the J assignment. * The crystal structure of $\mathbf{2}$ could not be fully refined due to poor statistics of its measurement.

References for tables S5, S6, and S7

1 G. Aromí, S. Bhaduri, P. Artús, K. Folting and G. Christou, Inorg. Chem., 2002, 41, 805-817.
2 G. Aromí, S. Bhaduri, P. Artús, J. C. Huffman, D. N. Hendrickson and G. Christou, Polyhedron, 2002, 21, 1779-1786.
3 J. B. Vincent, C. Christmas, H. R. Chang, Q. Li, P. D. W. Boyd, J. C. Huffman, D. N. Hendrickson and G. Christou, J. Am. Chem. Soc., 1989, 111, 2086-2097.
4 E. Libby, J. K. McCusker, E. A. Schmitt, K. Folting, D. N. Hendrickson and G. Christou, Inorg. Chem., 1991, 30, 3486-3495.
5 S. Wang, K. Folting, W. E. Streib, E. A. Schmitt, J. K. McCusker, D. N. Hendrickson and G. Christou, Angew. Chem. Int. Ed. Engl., 1991, 30, 305-306.
6 C. Cañada-Vilalta, J. C. Huffman and G. Christou, Polyhedron, 2001, 20, 1785-1793.

