Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Title:

Singlet ground state in compounds with $[Mn^{III}_4O_2]^{8+}$ core due to broken degeneration

Authors:

Luis Escriche-Tur, Belén Albela, Mercè Font-Bardia, Montserrat Corbella.

Content:

Table S1. Crystallographic data	S2
Figure S1. Crystal structure of 1 and 2	S2
Table S2. Selected structural parameters of 1	S3
Table S3. Selected structural parameters of 2	S3
Table S4. Axes lengths and elongation and rhombicity parameters	S4
Figure S2. Fits of the magnetic data using different approximations	\$4
Figure S3. Simulated curves considering an average value between J_2 and J_3	S4
Table S5. Structural parameters for [Mn ₂ O ₂] ⁸⁺ subunits	S5
Table S6. Structural parameters for [Mn ₂ O(RCOO) ₂] ²⁺ subunits	S5
Table S7. Structural parameters for [Mn ₂ O(RCOO)] ³⁺ subunits	S5

Table 31. Crystal uata and structure refinement details for compound	Table S1. Ci	vstal data and	structure	refinement	details for	compound 1
---	--------------	----------------	-----------	------------	-------------	------------

	$1 \cdot 1/2$ EtOH $\cdot 5/4$ CH $_3$ CN $\cdot 1/4$ H $_2$ O	2 ·2 CH ₃ CN*
Formula	$C_{167}H_{144.50}Cl_2Mn_8N_{10.50}O_{55.50}{}^a$	$C_{192}H_{210}CI_4Mn_8N_{14}O_{46}$
Fw (g/mol)	3696.84	4031.05
Crystal color, habit	red, prism	Red, thin plate
<i>Т</i> (К)	100(2)	100
λ (Mo Kα) / Å	0.71073	0.71073
Crystal size (mm)	0.62 x 0.25 x 0.23	0.23 x 0.20 x 0.03
Crystal system	Triclinic	Monoclinic
Space group	P1	P21/c
a / Å	16.254(3)	27.685(3)
b/Å	16.408(3)	19.1531(18)
c / Å	17.493(3)	18.3634(16)
α / °	111.443(6)	90
β/°	93.798(6)	91.828(3)
γ/°	103.048(6)	90
V / Å ³	4172.9(13)	9732.3(16)
Ζ	1	2
$ ho_{calcd}$ / g·cm ⁻³	1.471	1.376
μ/mm^{-1}	0.708	0.637
F(000)	1897	4192
heta range / °	2.21 to 26.88	2.10 to 30.72
Completeness to θ_{max}	99.7%	98.0%
Index ranges	$h = -20 \rightarrow 20$	$h = -39 \rightarrow 39$
	$k = -20 \rightarrow 20$	$k = -23 \rightarrow 27$
	$/ = -22 \rightarrow 22$	$l = -26 \rightarrow 24$
Data/restraints/parameters	34398/75/2243	29671 / 3 / 553
GooF on F ²	1.105	1.531
R ₁ ^c , ωR ₂ ^d [<i>l</i> >2 <i>σ</i> (<i>l</i>)]	0.0397, 0.1060	0.1949, 0.4709
R_1 , ωR_2 (all data)	0.0428. 0.1104	0.3236. 0.5161

^a 2 eq. of 1·1/2 EtOH·5/4 CH₃CN·1/4 H₂O; b 2 eq. of 2·2 CH₃CN ^c R₁ = $\sum |F_o| - |F_c| / \sum |F_o|$; ^d ω R₂ = { $\sum [\omega(F_o^2 - F_c^2)^2] / \sum [\omega(F_o^2)^2]^{1/2}$, $\omega = 1 / [\sigma^2(F_o^2) + (aP)^2 + bP]$, where $P = [\max(F_o^2, 0) + 2F_c^2] / 3$. * NOTE: This structure was only isotropically refined. The crystal was poorly diffracting and could not be refined completely. Therefore, it was neither deposited in the CCDC database.

Figure S1. Crystal structure of the cationic complex of **1** and **2**. $4-RC_6H_4$ - groups and H atoms of phen ligands have been omitted for better clarity. Color code: Mn^{III}, brown; C, grey; N, blue; O, red. The Crystal structure of **2** could not be fully refined due to poor statistics of its measurement.

Mn1–01 1.8	334(3)	Mn5–027	1.944(3)
Mn1-03 2.1	.44(3)	Mn5–O24	1.901(3)
Mn1–05 1.9	940(3)	Mn5–O25	1.904(3)
Mn1–07 2.1	.24(3)	Mn5–O38	2.110(4)
Mn1–N1 2.0)79(4)	Mn5–O29	2.174(4)
Mn1–N2 2.0	061(4)	Mn5–O32	1.928(3)
Mn2–01 1.9	909(3)	Mn6–O24	1.898(3)
Mn2–O2 1.9	908(3)	Mn6–O34	1.932(3)
Mn2–04 1.9	961(3)	Mn6–025	1.901(3)
Mn2–06 2.1	.71(3)	Mn6–031	1.968(3)
Mn2–09 1.9	962(3)	Mn6–O36	2.204(3)
Mn2–015 2.14	.47(3)	Mn6–O39	2.246(3)
Mn3–01 1.8	398(3)	Mn7–N5	2.083(3)
Mn3–02 1.8	397(3)	Mn7–O24	1.834(3)
Mn3–08 1.9	966(3)	Mn7–O26	2.194(3)
Mn3–011 1.9	946(3)	Mn7–028	1.939(3)
Mn3–013 2.2	213(4)	Mn7–N6	2.064(4)
Mn3–016 2.2	201(4)	Mn7–O30	2.141(3)
Mn4–02 1.8	333(3)	Mn8–O33	2.181(3)
Mn4–010 2.1	45(3)	Mn8–O35	2.178(3)
Mn4–012 2.1	.53(3)	Mn8–037	1.911(3)
Mn4–014 1.9	942(4)	Mn8–N7	2.070(5)
Mn4–N3 2.0	93(4)	Mn8–N8	2.076(3)
Mn4–N4 2.0)50(4)	Mn8–025	1.846(3)
Mn2…Mn3 2.86	60(1)	Mn5…Mn6	2.839(1)
Mn1…Mn2 3.30	09(1)	Mn5…Mn7	3.284(1)
Mn1…Mn3 3.36	62(1) I	Mn6…Mn7	3.409(1)
Mn2…Mn4 3.35	55(1)	Mn5…Mn8	3.381(1)
Mn3…Mn4 3.30	03(1)	Mn6…Mn8	3.332(1)
Mn1…Mn4 5.52	25(1)	Mn7…Mn8	5.693(1)
01–Mn1–N2 170).47(17)	024–Mn5–O32	171.56(14)
03–Mn1–07 172	2.02(13)	025–Mn5–027	173.00(15)
O5–Mn1–N1 169	9.47(14)	029–Mn5–O38	173.55(13)
06–Mn2–015 176	5.65(13)	025-Mn6-031	170.50(15)
01–Mn2–09 172	2.63(14)	O36–Mn6–O39	172.72(12)
02–Mn2–04 176	5.14(15)	024–Mn6–O34	175.16(15)
01–Mn3–011 174	1.01(15)	024–Mn7–N6	168.55(17)
02–Mn3–08 171	.57(15)	026–Mn7–O30	170.92(13)
013–Mn3–016 176	5.46(13)	028–Mn7–N5	170.84(14)
02–Mn4–N4 170).18(17)	033–Mn8–035	170.25(13)
010–Mn4–012 170).43(13)	037–Mn8–N7	169.13(17)
014–Mn4–N3 168	3.83(14)	025-Mn8-N8	171.81(15)
Mn1–O1–Mn3 128	3.51(18)	Mn6–024–Mn7	132.00(18)
Mn1–01–Mn2 124	I.17(16)	Mn5–024–Mn7	123.10(18)
Mn2–01–Mn3 97.3	38(14)	Mn5–O24–Mn6	96.77(14)
Mn2–O2–Mn3 97.4	47(14)	Mn5–O25–Mn6	96.55(14)
Mn2–O2–Mn4 127	7.50(17) I	Mn5–O25–Mn8	128.76(19)
Mn3–O2–Mn4 124	I.63(19)	Mn6–O25–Mn8	125.58(17)
Mn2–O1–O2–Mn3 166	5.6(2)	Mn5–O25–O24–Mn6	169.2(2)
Mn1–Mn3…Mn2–O1 15.5	5(1) (Mn8···Mn6···Mn5–O25	14.7(1)
Mn4–Mn2…Mn3–O2 15.9	9(1)	Mn7···Mn5···Mn6–O24	13.9(1)
015–Mn2…Mn1–O7 85.5	5(1) (033–Mn8…Mn6–039	89.8(1)
016–Mn3…Mn4–O10 82.6	6(1)	038–Mn5…Mn7–O30	91.7(1)

Table S2. Selected interatomic distances (Å) and angles (deg) for compound **1** with standard deviations in parentheses.

Table S3. Selected interatomic distances (Å) and angles (deg) for compound **2** with standard deviations in parentheses. *NOTE*: The crystal structure of **2** could not be completely refined due to poor quality of the crystallographic data. The following structural parameters should **never** be used for magneto-structural correlations, neither as precise values.

Mn1-01	1.870(6)	Mn3–N4	2.043(8)
Mn1–02	1.912(6)	Mn3–09	1.923(6)
Mn1–04	2.142(7)	Mn3–011	2.083(6)
Mn1–07	2.208(6)	Mn3–08	1.855(6)
Mn1–N1	2.039(8)	Mn3–N3	2.037(8)
Mn1–N2	2.036(8)	Mn3–014	2.219(6)
Mn2-01	1.860(6)	Mn4–O8b	1.919(6)
Mn2–03	2.162(6)	Mn4–015	2.216(6)
Mn2–05	1.945(7)	Mn4–012	1.936(6)
Mn2–N5	2.355(8)	Mn4–08	1.890(6)
Mn2–O1a	1.919(6)	Mn4–O13b	1.935(6)
Mn2–O6a	1.913(6)	Mn4–010	2.143(6)
O1-Mn1-N1	169.7(3)	08–Mn3 –N3	168.6(3)
04-Mn1-07	168.0(3)	O9–Mn3 –N4	170.2(3)
O2-Mn1-N2	171.2(3)	011–Mn3 –014	170.9(2)
01–Mn2–O6a	171.6(3)	08-Mn4-013b	171.7(2)
O3-Mn2-N5	169.5(3)	010-Mn4-015	171.2(2)
01a–Mn2–O5	175.7(3)	O8b-Mn4-O12	173.2(2)
Mn1–O1–Mn2	122.0(3)	Mn3-08-Mn4	120.4(3)
Mn1–O1–Mn2a	125.7(3)	Mn3–O8–Mn4b	125.9(3)
Mn2–O1–Mn2a	98.8(3)	Mn4–O8–Mn4b	98.7(3)
Mn2–01–01a–Mn2a	180	Mn4–08–08b–Mn4b	180
Mn1–Mn2–Mn2a–O1	18.9(3)	Mn3-Mn4-Mn4b-O8	19.8(3)
N5-Mn2-Mn1-07	98.1(2)	015-Mn4-Mn3-014	97.5(2)

Symmetry codes: (a) 1 – x, 1 – y, –z; (b) –x, 1 – y, 1 – z.

Table S4 x, y, and z axes length and the elongated (a	Δ) and rhombic distortion (ρ) of each Mn ion for
compounds 1 and 2.	

Compound	Mn centre	x/Å	y/Å	z / Å	Δ/%	ρ/%
	Mn1	3.895	4.019	4.267	7.8	3.2
	Mn2	3.87	3.87	4.319	11.6	0.0
	Mn3	3.862	3.843	4.414	14.6	-0.5
1	Mn4	3.883	4.035	4.297	8.5	3.9
1	Mn5	3.827	3.846	4.283	11.6	0.5
	Mn6	3.83	3.868	4.449	15.6	1.0
	Mn7	3.898	4.021	4.334	9.5	3.2
	Mn8	3.923	3.98	4.36	10.3	1.5
	Mn1	~3.90	~3.95	~4.34	~11	~1
2*	Mn2	~3.78	~3.85	~4.50	~18	~2
	Mn3	~3.90	~3.96	~4.31	~10	~2
	Mn4	~3.83	~3.85	~4.36	~14	~1

 $\Delta = (z - \overline{x}y) / \overline{x}y, \ \overline{x}y = (x + y)/2; \ \rho = (y - x) / x.$ * The Crystal structure of **2** could not be fully refined due to poor statistics of its measurement.

		Constraints and restraints					
Compound	Parameters	Fit 1 $J_2 = J_3$ $D_{Ma} = 0$	Fit 2 $J_2 = J_3$ $D_{Ma} > -4.9 \text{ cm}^{-1}$	Fit 3 $J_2 \neq J_3$ $D_{Ma} = 0$			
	$2J_1 / \text{ cm}^{-1}$	-18.6	-18.2	-46.6			
1	$2J_2 / \text{ cm}^{-1}$	-13.3	-13.4	-13.9			
1	$2J_3$ / cm ⁻¹	-13.3	-13.4	-3.1			
	D_{Mn} / cm ⁻¹	0	-3.2	0			
	$2J_1 / \text{ cm}^{-1}$	-17.9	-72.2	-50.1			
2	$2J_2 / \text{ cm}^{-1}$	-11.5	-5.8	-13.3			
2	$2J_3 / \text{ cm}^{-1}$	-11.5	-5.8	-6.3			
	D_{Mn} / cm ⁻¹	0	-4.9	0			
$\begin{array}{c} 10 \\ \mathbf{Fit 1} \\ B \\ \mathbf{J}_{z} = J_{z} \\ D_{Ms} = \\ D_{Ms} = \\ 0 \\ \mathbf{J}_{z} = J_{z} $	20 00 00 00 00 00 00 00 00 00	$\begin{array}{c} 10 \\ Fit 2 \\ J_{j} = J_{j} \\ D_{M} > -4.9 \\ 0 \\ 0 \\ 300 \\ 0 \\ 100 \end{array}$	$\begin{bmatrix} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 0.0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$J_{j} = 0$ $\int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{0} \int_{\frac{1}{2}}^{\frac{1}{2}} \frac{1}{100} \int_{\frac{1}{2}}^{\frac{1}{$			

Figure S2. Results from different fits of the $\chi_M T$ versus T plots of compounds **1** (red) and **2** (blue). The solid lines correspond to the fit to the experimental data considering $J_2 = J_3$, omitting or including D_{Mn} (Fit 1 and 2, respectively), and considering $J_2 \neq J_3$ (Fit 3). The molecular weight of **2** was referred to one Mn₄ unit, considering an average formula between the two entities.

Figure S3. Experimental (open circles) and simulated (straight lines) $\chi_M T$ versus *T* and χ_M versus *T* (inset) plots for compounds **1** (red) and **2** (blue). The simulation was performed with $2J_1$ and D_{Mn} values obtained from the fit and with the average value between $2J_2$ and $2J_3$ (-9.7 cm⁻¹ for **1** and -11.5 cm⁻¹ for **2**). The molecular weight of **2** was referred to one Mn₄ unit, considering an average formula between the two entities.

Table S5. Comparison of the average core parameters, distances (Å) and angles (deg), for the $[Mn^{III}_2O_2]^{8+}$ subunits of the several $[Mn^{III}_4O_2]^{8+}$ compounds.

			Mn _c –O _b –O _b –	2J1		
Compound	Mn _c …Mn _c	Mn _c –O _b –Mn _c	Mn _c	/ cm ⁻¹	Ref.	
1	2.849	97.1	168	-45.5	This work	
2*	~2.88	~99	180	-43.0	This work	
[Mn ₄ O ₂ (NO ₃)(O ₂ CEt) ₆ (bpy) ₂] ⁺	2.847	97.2	169	-33.0	1	
[Mn ₄ O ₂ (O ₂ CEt) ₇ (bpya) ₂] ⁺	2.871	97.2	170	-51.4	2	
[Mn ₄ O ₂ (O ₂ CMe) ₇ (bpy) ₂] ⁺	2.848	96.3	167	-47.0	3	
$[Mn_4O_2(O_2CMe)_7(pic)_2]^{-1}$	2.842	96.6	165	-49.2	4	
$[Mn_4O_2(py)_2(O_2CMe)_6(dbm)_2]$	2.875	99.1	180	-29.8	5	
[Mn ₄ O ₂ (O ₂ CPh) ₆ (dpm) ₂]	2.841	98.5	179	-55.0	6	

Abbreviations: bpya = bis(2-pyridyl)amine, bpy = 2,2'-bipyridine, pic = picolinate, py = pyridine, dbmH = dibenzoylmethane, dpmH = dipivaloylmethane; see Eq. 1 and Figure 5 for the *J* assignment. * The crystal structure of **2** could not be fully refined due to poor statistics of its measurement.

Table	S6.	Comparison	of	the	average	core	parameters,	distances	(Å)	and	angles	(deg),	for	the
[Mn ₂ C	(RCC	00) ₂] ²⁺ subuni	its oʻ	f the	several [Mn ^Ⅲ ₄(O_2] compound	ls.						

Compound	Mn _c …Mn _t	Mn _c –O _b –Mn _t	L–Mn _c …Mn _t –L	2J ₂ / cm ⁻¹	Ref.
1	3.307	124.4	87.4	- 15.1/-4.4	This work
2*	~3.26	~121	~99	- 14.7/-8.2	This work
[Mn ₄ O ₂ (NO ₃)(O ₂ CEt) ₆ (bpy) ₂] ⁺	3.258	121.8	74.1	-3.4	1
[Mn ₄ O ₂ (O ₂ CEt) ₇ (bpya) ₂] ⁺	3.307	126.1	92.6	-6.6	2
$[Mn_4O_2(O_2CMe)_7(bpy)_2]^+$	3.301	123.7	82.5	-15.6	3
$[Mn_4O_2(O_2CMe)_7(pic)_2]^{-1}$	3.311	125.0	82.3	-10.6	4
$[Mn_4O_2(py)_2(O_2CMe)_6(dbm)_2]$	3.308	123.2	105.1	-10.0	5
$[Mn_4O_2(O_2CPh)_6(dpm)_2]$	3.255	120.1	70	-0.8	6

 $L-Mn_c \cdots Mn_c-L =$ torsion angle between the two Jahn-Teller axes. Abbreviations: bpya = bis(2-pyridyl)amine, bpy = 2,2'-bipyridine, pic = picolinate, py = pyridine, dbmH = dibenzoylmethane, dpmH = dipivaloylmethane. See Eq. 1 and Figure 5 for the *J* assignment. * The crystal structure of **2** could not be fully refined due to poor statistics of its measurement.

Table S7. Comparison of the average core parameters, distances (Å) and angles (deg), for the $[Mn_2O(RCOO)]^{3+}$ unit of the several $[Mn^{III}_4O_2]$ complexes.

Compound	Mn _c …Mn _t	Mn _c –O _b –Mn _t	2J ₃ / cm ⁻¹	Ref.
1	3.377	129.2	-15.1/-4.4	This work
2*	~3.37	~126	-14.7/-8.2	This work
$[Mn_4O_2(NO_3)(O_2CEt)_6(bpy)_2]^+$	3.34	126.4	-3.4	1
$[Mn_4O_2(O_2CEt)_7(bpya)_2]^+$	3.444	130.7	-6.6	2
$[Mn_4O_2(O_2CMe)_7(bpy)_2]^+$	3.378	130.2	-15.6	3
$[Mn_4O_2(O_2CMe)_7(pic)_2]^-$	3.396	129.7	-10.6	4
$[Mn_4O_2(py)_2(O_2CMe)_6(dbm)_2]$	3.398	128.6	-10.0	5
$[Mn_4O_2(O_2CPh)_6(dpm)_2]$	3.362	126.0	-0.8	6

Abbreviations: bpya = bis(2-pyridyl)amine, bpy = 2,2'-bipyridine, pic = picolinate, py = pyridine, dbmH = dibenzoylmethane, dpmH = dipivaloylmethane; see Eq. 1 and Figure 5 for the*J*assignment. * The crystal structure of**2**could not be fully refined due to poor statistics of its measurement.

References for tables S5, S6, and S7

- 1 G. Aromí, S. Bhaduri, P. Artús, K. Folting and G. Christou, *Inorg. Chem.*, 2002, **41**, 805–817.
- 2 G. Aromí, S. Bhaduri, P. Artús, J. C. Huffman, D. N. Hendrickson and G. Christou, *Polyhedron*, 2002, **21**, 1779–1786.
- 3 J. B. Vincent, C. Christmas, H. R. Chang, Q. Li, P. D. W. Boyd, J. C. Huffman, D. N. Hendrickson and G. Christou, *J. Am. Chem. Soc.*, 1989, **111**, 2086–2097.
- 4 E. Libby, J. K. McCusker, E. A. Schmitt, K. Folting, D. N. Hendrickson and G. Christou, *Inorg. Chem.*, 1991, **30**, 3486–3495.
- 5 S. Wang, K. Folting, W. E. Streib, E. A. Schmitt, J. K. McCusker, D. N. Hendrickson and G. Christou, *Angew. Chem. Int. Ed. Engl.*, 1991, **30**, 305–306.
- 6 C. Cañada-Vilalta, J. C. Huffman and G. Christou, Polyhedron, 2001, 20, 1785–1793.