Electronic Supplementary Information

AgPd-MnO_x supported on carbon nanospheres: An efficient catalyst for dehydrogenation of formic acid

Xiaoyu Zhang, Ningzhao Shang, Xin Zhou, Cheng Feng*, Shutao Gao, Qiuhua

Wu, Zhi Wang, Chun Wang*

College of Science, Agricultural University of Hebei, Baoding 071001, China

Fig. S1 X-ray diffraction patterns for as-prepared carbon spheres and AgPd-MnO_x/carbon spheres. (a) A-CS, (b) Ag₂Pd₈-(MnO_x)_{1.5}/A-CS, (c) Ag₃Pd₇-(MnO_x)_{1.5}/A-CS,(d) K-CS

Fig. S2 The corresponding particle size distributions of Ag_1Pd_9 -(MnO_x)_{1.5}/A-CS.

Fig. S3 The corresponding elemental mapping for Ag, Pd and Mn

Fig. S4 The ATR FT-IR spectra of Ag_1Pd_9 -(MnO_x)_{1.5}/A-CS

Fig. S5 XPS patterns of Ag_7Pd_3 -(MnO_x)_{1.5}/A-CS (A, B and C) and Pd_{10} -(MnO_x)_{1.5}/A-CS (D

and E)

Fig. S6 Different molar ratios of Mn and Ag-Pd (The reactions were performed at 50°C, n_{FA} : n_{PF} = 2.5:7.5)

Fig. S7 GC spectrum using TCD for the evolved gas from FA/PF solution over Ag_1Pd_9 -(MnO_x)_{1.5}/A-CS. The limit of detection for CO is 0.1 ppm.

Fig. S8 Conversion of FA with different catalysts versus time at 50°C. (a)Ag₁Pd₉-(MnO_x)_{1.5}/A-CS, (b)Ag₃Pd₇-(MnO_x)_{1.5}/A-CS, (c)Ag₂Pd₈-(MnO_x)_{1.5}/A-CS, (d)Pd₁₀-(MnO_x)_{1.5}/A-CS, (e)Ag₇Pd₃-(MnO_x)_{1.5}/A-CS, (f)Ag₈Pd₂-(MnO_x)_{1.5}/A-CS), (g) Ag₁₀-(MnO_x)_{1.5}/A-CS)

Fig. S9 Conversion of FA catalyzed by Ag_1Pd_9 -(MnO_x)_{1.5}/A-CS versus time (a) and recycling times (b) at 50°C.

Catalysts	CS/mg	AgNO ₃ /mL	H ₂ PdCl ₄ /mL	MnSO ₄ /mL
		(1mg/mL)	(1mg/mL)	(1mg/mL)
$Ag_1Pd_9-(MnO_x)_{1.5}/A-CS$	41	0.79	7.51	11.90
$Ag_2Pd_8-(MnO_x)_{1.5}/A-CS$	41	1.58	6.68	11.90
$Ag_3Pd_7-(MnO_x)_{1.5}/A-CS$	41	2.37	5.84	11.90
$Ag_7Pd_3-(MnO_x)_{1.5}/A-CS$	41	5.53	2.50	11.90
Ag_8Pd_2 -(MnO _x) _{1.5} /A-CS	41	6.32	1.67	11.90
$Ag_{10}-(MnO_x)_{1.5}/A-CS$	41	7.9	0	11.90
$Pd_{10}-(MnO_x)_{1.5}/A-CS$	41	0	8.35	11.90
$Ag_1Pd_9-(MnO_x)_1/A-CS$	41	0.79	7.51	8.0
$Ag_1Pd_9-(MnO_x)_2/A-CS$	41	0.79	7.51	15.9

Table S1 The dosages of reagents for the synthesis of different catalysts

Table S2 The contents of Pd and Ag in AgPd- $(MnO_x)_{1.5}/A$ -CS determined by ICP-AES

Catalysts	$A\sigma$ (wt %)	Pd(wt%)	Initial mass ratio of
	11g (wt /0)	14(wt /0)	Ag and Pd
$Ag_1Pd_9-(MnO_x)_{1.5}/A-CS$	0.97	8.92	1:9
Ag_2Pd_8 - $(MnO_x)_{1.5}/A$ - CS	1.96	7.94	2:8
$Ag_3Pd_7-(MnO_x)_{1.5}/A-CS$	2.92	6.90	3:7
$Ag_7Pd_3-(MnO_x)_{1.5}/A-CS$	6.91	2.91	7:3
$Ag_8Pd_2-(MnO_x)_{1.5}/A-CS$	7.93	1.95	8:2

Table S3 The N_2 adsorption-desorption isotherms of CS and Ag_1Pd_9-(MnOx)_{1.5}/CS

Comula	$\mathbf{S}_{\mathrm{BET}}$	Pore volume	Pore diameter
Sample	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	(nm)
A-CS	782.63	0.65	3.39
Ag_1Pd_9 -(MnO _x) _{1.5} /A-CS	722.47	0.61	3.30
K-CS	2084.06	1.08	2.08
Ag_1Pd_9 -(MnO _x) _{1.5} /K-CS	1519.24	0.80	2.12