Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

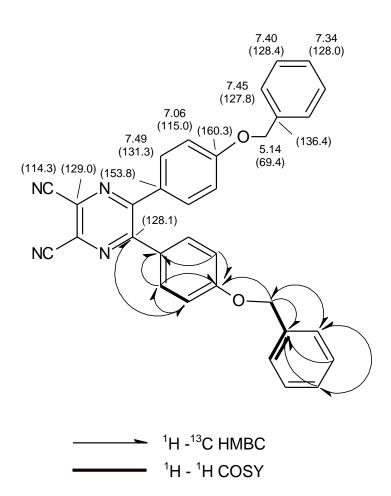
Supplementary data for

Synthesis and singlet oxygen generation of pyrazinoporphyrazines containing dendrimeric aryl substituents

Adam Tillo^a, Dariusz T. Mlynarczyk^a, Lukasz Popenda^b, Barbara Wicher^a, Michal Kryjewski^{*c}, Wojciech Szczolko^a, Stefan Jurga^{b,d}, Jadwiga Mielcarek^c, Maria Gdaniec^e, Tomasz Goslinski^a, Ewa Tykarska^{*a}

a. Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland, E-mail: etykarsk@ump.edu.pl

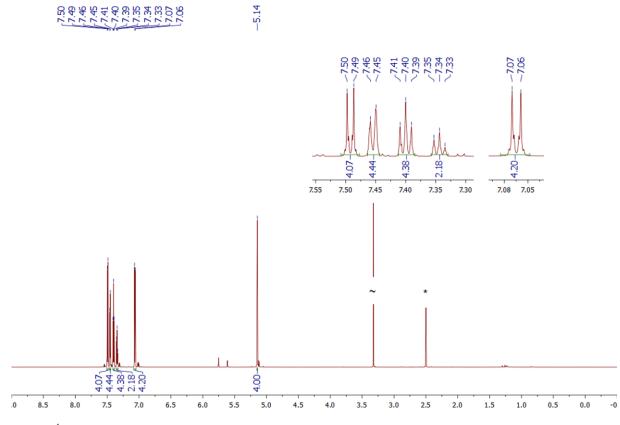
b. NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland


c. Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland, E-mail: mkryjewski@ump.edu.pl

d. Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland

e. Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznan, Poland *Corresponding authors. Tel. +48 61 854 6632; fax. +48 61 854 6639; e-mail address: etykarsk@ump.edu.pl, (E. Tykarska); Tel. +48 61 854 6606; fax. +48 61 854 6609; e-mail address: mkryjewski@ump.edu.pl (M. Kryjewski)

Table of Contents


Spectroscopic data
Compound 5b3
Compound 5 c 5
Porphyrazine 67
Porphyrazine 7
Porphyrazine 8
Porphyrazine 9
X-ray data
HPLC analysis of purity
Purity of porphyrazine 7
Purity of porphyrazine 9
Aggregation studies
Singlet oxygen generation efficacy
Fluorescence spectra
Synthetical approaches towards porphyrazines bearing 4-(benzyloxy)phenyl substituents31

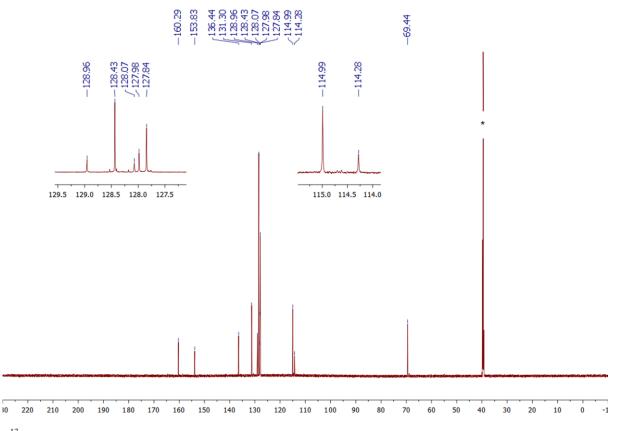

Fig. S1. ¹H and (¹³C) chemical shift values [ppm] of **5b**. Key ¹H-¹³C HMBC and ¹H-¹H COSY correlations are marked with arrows and bold lines, respectively.

Table S1. ¹H and ¹³C NMR data obtained for **5b** including key correlations determined from ¹H-¹³C HSQC and ¹H-¹³C HMBC spectra.

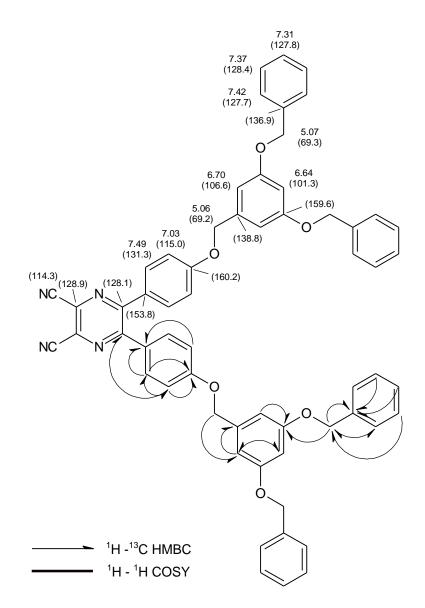
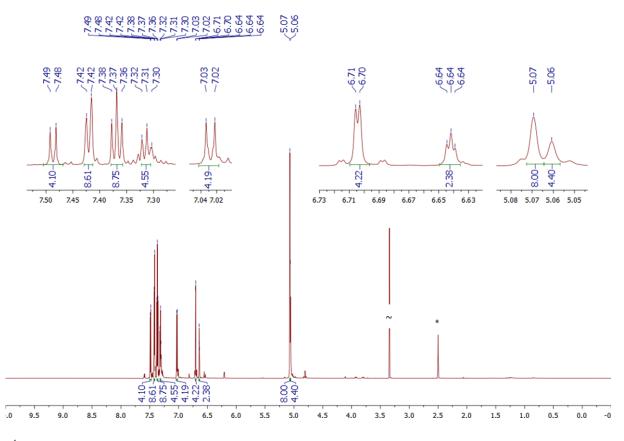

δ _H (ppm)	Multiplicity (J _{H-H} in Hz)	¹ H- ¹³ C HSQC δ _C (ppm)	¹ H- ¹³ C HMBC δ _C (ppm)			
7.49	d (7.5)	131.3	115.0	153.8	160.3	
7.45	d (7.5)	127.8	69.4	128.0		
7.40	t(7.5)	128.4	136.4			
7.34	t (7.5)	128.0	127.8	136.4		
7.06	d (7.0)	115.0	128.1	131.3	153.8	160.3
5.14	S	69.4	127.8	136.4	160.3	
Quater	nary carbon atoms (p	opm): 114.3, 128.1, 1	29.0, 136.4	4, 153.8, 1	60.3	

Fig. S2. ¹H NMR spectrum of **5b** (800 MHz, DMSO- d_6 , 298 K). The symbols * and ~ indicate DMSO- d_6 and water residual peaks, respectively.


Fig. S3. ¹³C NMR spectrum recorded for **5b** (201 MHz, DMSO- d_6 , 298 K). The symbol * indicates DMSO- d_6 peak.

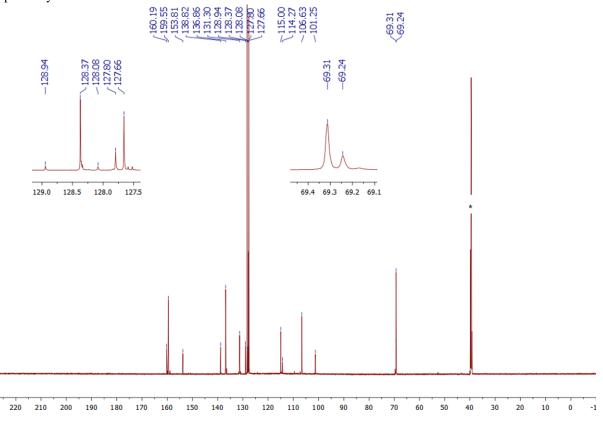

Fig. S4. ¹H and (¹³C) chemical shift values [ppm] of **5c**. Key ¹H-¹³C HMBC and ¹H-¹H COSY correlations are marked with arrows and bold lines, respectively.

Table. S2. ¹H and ¹³C NMR data obtained for **5c** including key correlations determined from ¹H-¹³C HSQC and ¹H-¹³C HMBC spectra.

S (mmm)	Multiplicity	¹ H- ¹³ C HSQC		¹ H- ¹³ C	HMBC	
δ _H (ppm)	$(J_{\text{H-H}} \text{ in Hz})$	δ_{C} (ppm)	δ _C (ppm)			
7.49	d (7.5)	131.3	115.0	153.8	160.2	
7.42	d (7.5)	127.7	69.3			
7.37	t (7.5)	128.4	69.3	136.9		
7.31	m	127.8	136.9			
7.03	d (7.0)	115.0	128.1	131.3	153.8	160.2
6.70	d (2.4)	106.6	101.3	138.8	159.6	
6.64	t (2.4)	101.3	106.6			
5.07	S	69.3	127.7	136.9	159.6	
5.06	S	69.2	106.6			
Quaternary ca	arbon atoms (ppm): 1	14.3, 128.1, 128.9, 1	36.9, 138.8	8, 153.8, 1	59.6, 160	.2



Fig. S5. ¹H NMR spectrum of **5c** (800 MHz, DMSO- d_6 , 298 K). The symbols * and ~ indicate DMSO- d_6 and water residual peaks, respectively.

Fig. S6. ¹³C NMR spectrum recorded for **5c** (201 MHz, DMSO- d_6 , 298 K). The symbol * indicates DMSO- d_6 peak.

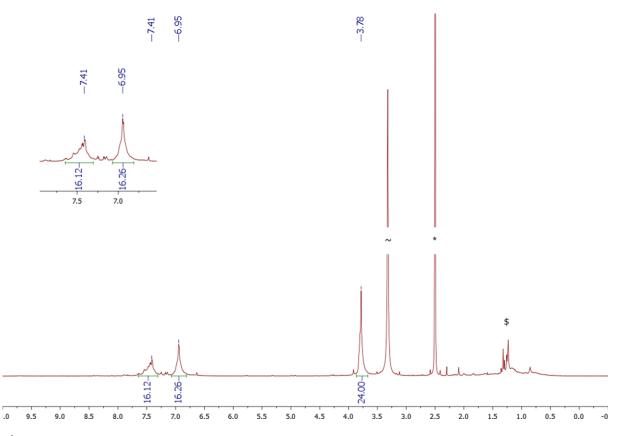

30

Fig. S7. ¹H and (¹³C) chemical shift values [ppm] of **6**. Key ¹H-¹³C HMBC and ¹H-¹H COSY correlations are marked with arrows and bold lines, respectively.

Table S3. ¹H and ¹³C NMR data obtained for **6** including key correlations determined from ¹H-¹³C HSQC and ¹H-¹³C HMBC spectra.

δ _H (ppm)	Multiplicity (J _{H-H} in Hz)	¹ H- ¹³ C HSQC δ _C (ppm)	¹ H- ¹³ C HMBC δ _C (ppm)	
7.41	m	131.3	159.7	
6.95	m	113.9	159.7	
3.78	S	55.3	159.7	
Quaternary carbon atoms (ppm): 159.7				

Fig. S8. ¹H NMR spectrum of **6** (800 MHz, DMSO- d_6 , 298 K). The symbols *, ~ and \$ indicate DMSO- d_6 , water and *n*-hexane residual peaks, respectively.

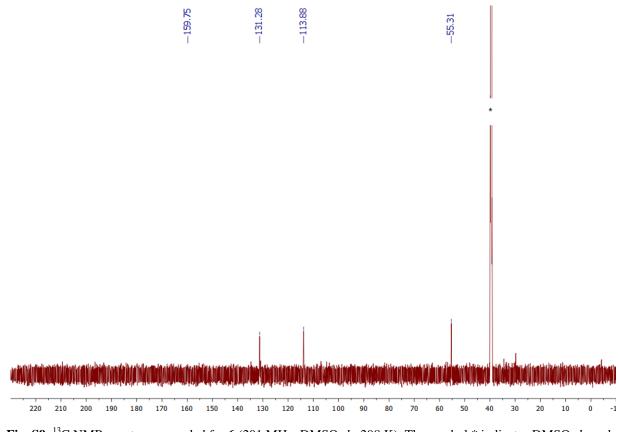
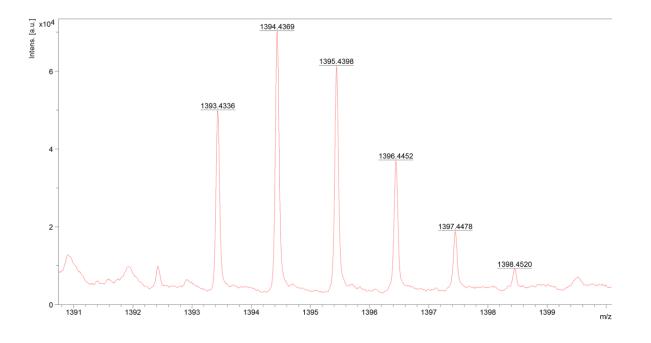
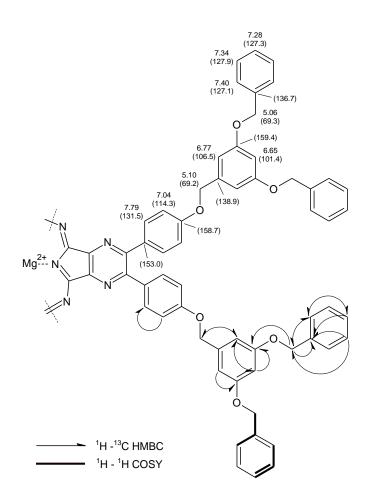
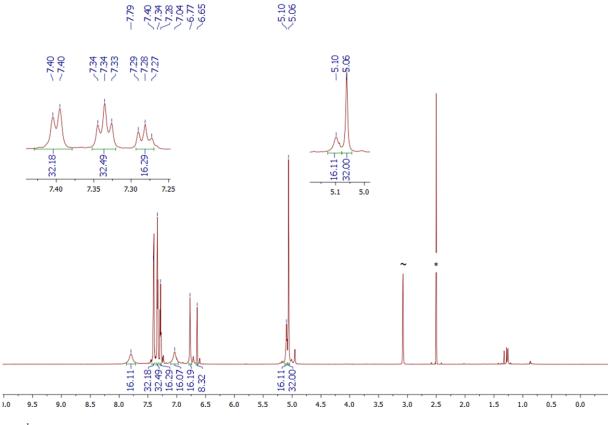
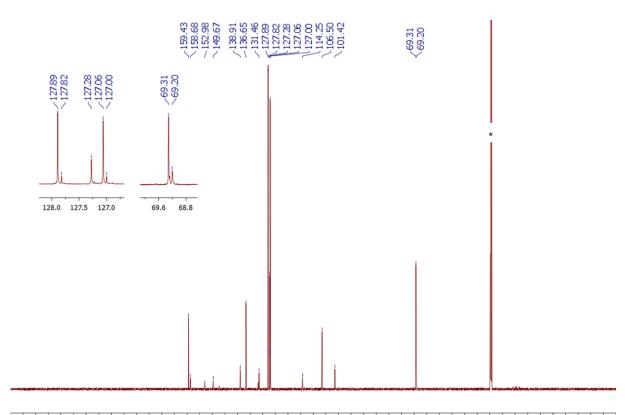
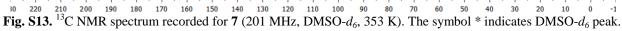


Fig. S9. ¹³C NMR spectrum recorded for 6 (201 MHz, DMSO- d_6 , 298 K). The symbol * indicates DMSO- d_6 peak.


Fig. S10. MALDI-TOF HRMS spectrum of 6. Calculated mass for $C_{80}H_{56}MgN_{16}O_8[M]^+$ 1393.4345, found: *m/z* 1393.4336; for $C_{80}H_{57}MgN_{16}O_8[M+H]^+$ 1394.4423, found: *m/z* 1394.4369.


Fig. S11. ¹H and (¹³C) chemical shift values [ppm] of **7**. Key ¹H-¹³C HMBC and ¹H-¹H COSY correlations are marked with arrows and bold lines, respectively.


Table S4. ¹H and ¹³C NMR data obtained for **7** including key correlations determined from ¹H-¹³C HSQC and ¹H-¹³C HMBC spectra.

δ _H (ppm)	Multiplicity (J _{H-H} in Hz)	¹ H- ¹³ C HSQC δ _C (ppm)	1	H- ¹³ C HMB(δ _C (ppm)	C
7.79	bs	131.5		-	
7.40	d (7.5)	127.1	127.3	69.3	
7.34	t (7.5)	127.9	136.7	69.3	
7.28	t (7.5)	127.3	136.7	127.1	
7.04	bs	114.3	131.5		
6.77	S	106.5	159.4	101.4	69.2
6.65	S	101.4	159.4	106.5	
5.10	S	69.2	106.5		
5.06	S	69.3	159.4	136.7	127.1
Other quaternary	carbon atoms (ppm):	127.00, 127.8, 136.7	7, 138.9, 149	.7, 153.0, 158	.7, 159.4

Fig. S12. ¹H NMR spectrum of **7** (800 MHz, DMSO- d_6 , 353 K). The symbols * and ~ indicate DMSO- d_6 and water residual peaks, respectively.

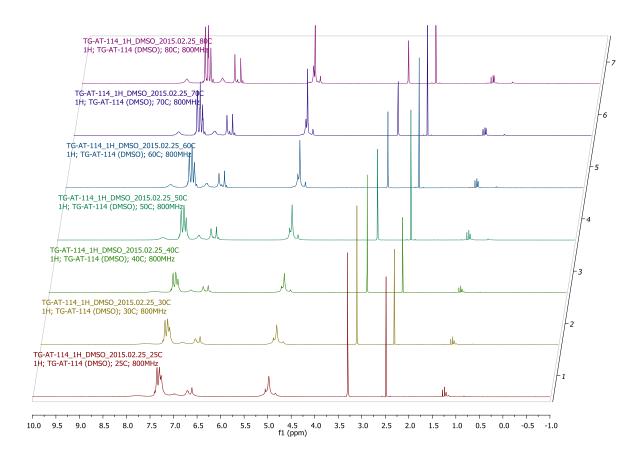
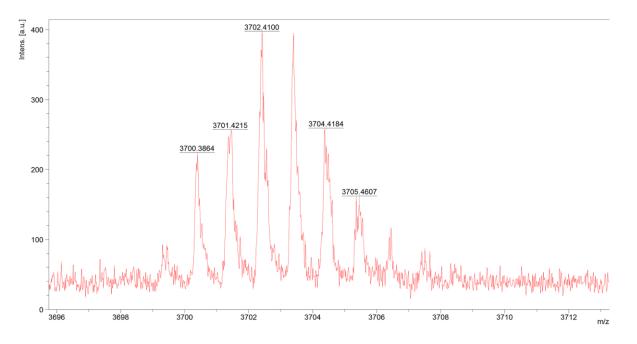
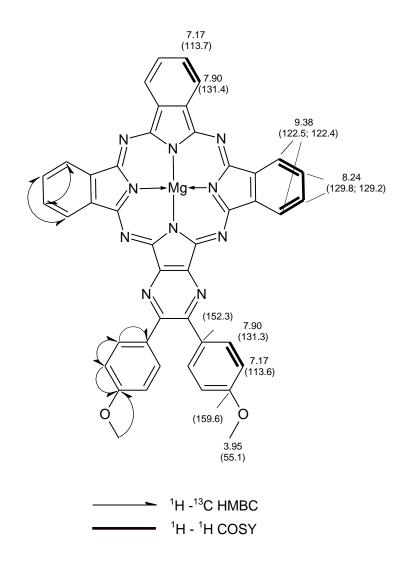
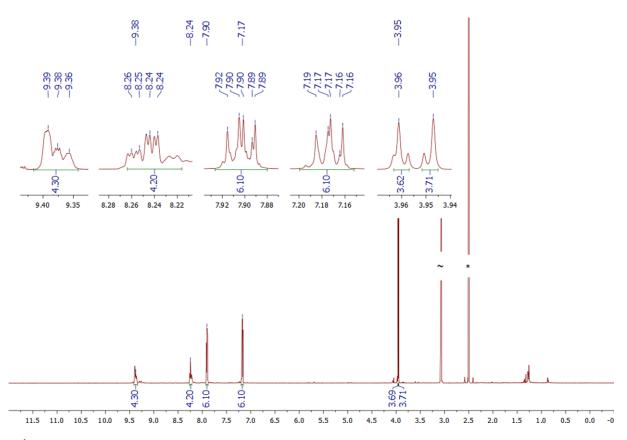




Fig. S14. ¹H NMR spectrum of 7 (800 MHz, DMSO-*d*₆). Temperature changes from 298 K (red, bottom) to 353 K (violet, top).


Fig. S15. MALDI-TOF HRMS spectrum of **7.** Calculated mass for $C_{240}H_{184}MgN_{16}O_{24}[M]^+$ 3700.3606, found: *m/z* 3700.3864.

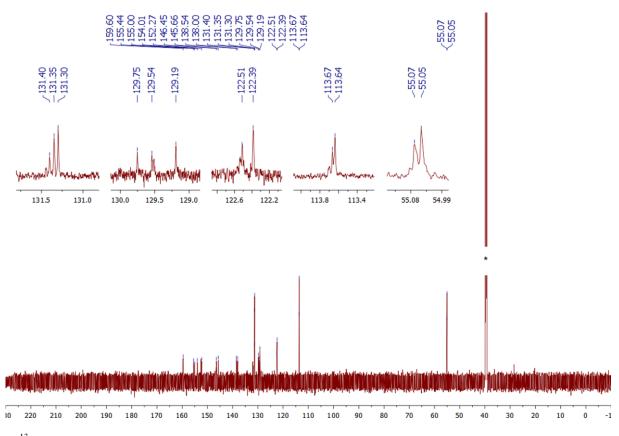
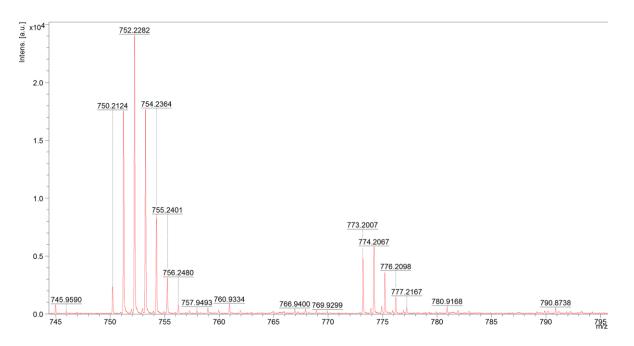

Fig. S16. ¹H and (¹³C) chemical shift values [ppm] of **8**. Key ¹H-¹³C HMBC and ¹H-¹H COSY correlations are marked with arrows and bold lines, respectively.

Table S5. ¹H and ¹³C NMR data obtained for **8** including key correlations determined from ¹H-¹³C HSQC and ¹H-¹³C HMBC spectra.


δ _H (ppm)	Multiplicity (J _{H-H} in Hz)	$\begin{array}{c} {}^{1}\text{H-}{}^{13}\text{C}\text{ HSQC}\\ \delta_{C} \text{ (ppm)} \end{array}$	¹ H- ¹³ C H δ _C (p)	-	
9.38	m	122.5	129.8		
9.38	m	122.4	129.2		
8.24	m	129.8	122.5		
8.24	m	129.2	122.4		
7.90	m	131.4	113.7		
7.90	m	131.3	152.3	113.6	
7.17	m	113.7	131.4		
7.17	m	113.6	159.6	131.3	
3.95	m	55.1	159.6		
	Other quaternary carbon atoms (ppm): 152.3				


Fig. S17. ¹H NMR spectrum of **8** (800 MHz, DMSO- d_6 , 353 K). The symbols * and ~ indicate DMSO- d_6 and water residual peaks, respectively.

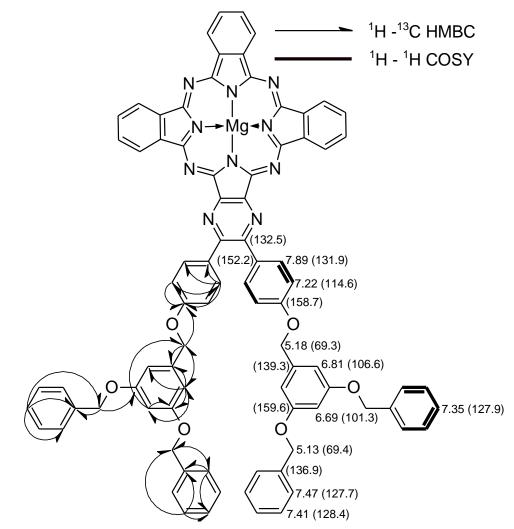

Fig. S18. ¹³C NMR spectrum recorded for **8** (201 MHz, DMSO- d_6 , 353 K). The symbol * indicates DMSO- d_6 peak.

Fig S19. ¹H NMR spectrum of **8** (800 MHz, DMSO- d_6). Temperature changes from 298 K (red, bottom) to 353 K (violet, top). With the rise of temperature, peaks become better resolved.

Fig. S20. MALDI-TOF HRMS spectrum of **8.** Calculated mass for $C_{44}H_{26}MgN_{10}O_2[M]^+$ 750.2091, found: *m/z* 750.2124; for $C_{44}H_{26}MgN_{10}NaO_2[M+Na]^+$ 773.1988, found: *m/z* 773.2007.

Fig. S21. ¹H and (¹³C) chemical shift values [ppm] of **9**. Key ¹H-¹³C HMBC and ¹H-¹H COSY correlations are marked with arrows and bold lines, respectively.

Table S6. ¹H and ¹³C NMR data obtained for **9** including key correlations determined from ¹H-¹³C HSQC and ¹H-¹³C HMBC spectra.

δ _H (ppm)	Multiplicity (J _{H-H} in Hz)	¹ H- ¹³ C HSQC δ _C (ppm)	¹ H- ¹³ C HMBC δ _C (ppm)
9.13 - 8.59	m	122.5	129.4 129.2
8.09 - 7.93	m	129.4 129.2 128.4 128.3 127.9 127.7	138.0 122.5
7.89	m	131.9	158.7 152.2 131.9 114.6
7.47	m	127.7	136.9 127.9 69.4
7.41	m	128.4	136.9 128.4 69.4
7.35	m	127.9	136.9 127.7 69.4
7.22	m	114.6	158.7 132.5 114.6
6.81	m	106.6	159.6 139.3 106.6 101.3
			69.3
6.69	m	101.3	159.6 106.6 69.3
5.18	S	69.3	158.7 139.3 106.6
5.13	S	69.4	159.6 136.9 127.7
Other carbon ator	ns (ppm): 154.7, 154	.4, 153.8, 153.5, 152.4,	, 152.0, 145.8, 145.7, 138.5, 138.1

Fig. S22. ¹H NMR spectrum of **9** (800 MHz, DMSO- d_6 , 298 K). The symbols #, ~ and * indicate CH₂Cl₂ water and DMSO- d_6 residual peaks, respectively.

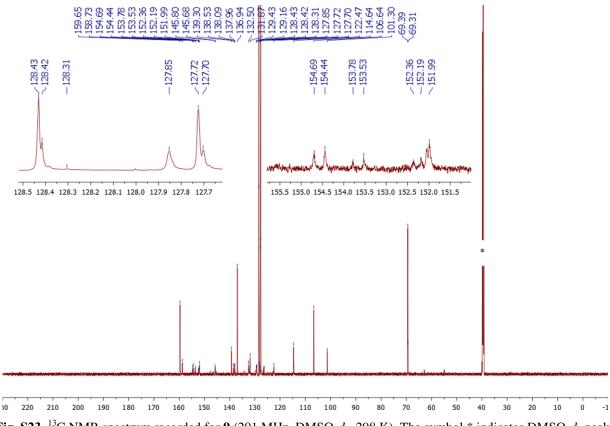


Fig. S23. ¹³C NMR spectrum recorded for 9 (201 MHz, DMSO- d_6 , 298 K). The symbol * indicates DMSO- d_6 peak.

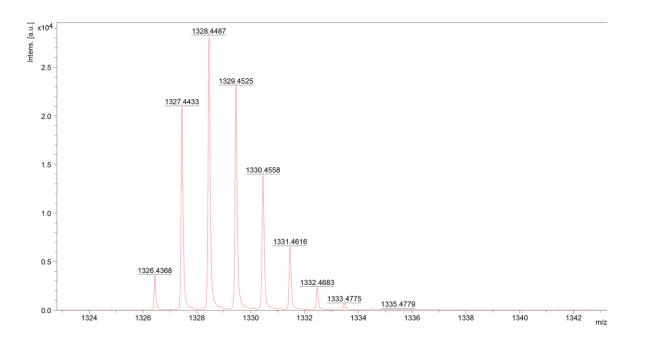


Fig. S24. MALDI-TOF HRMS spectrum of 9. Calculated mass for $C_{84}H_{58}MgN_{10}O_6$ [M]⁺ 1327.4420, found: *m/z* 1327.4433; for $C_{84}H_{59}MgN_{10}O_6$ [M+H]⁺ 1328.4498, found: *m/z* 1328.4487.

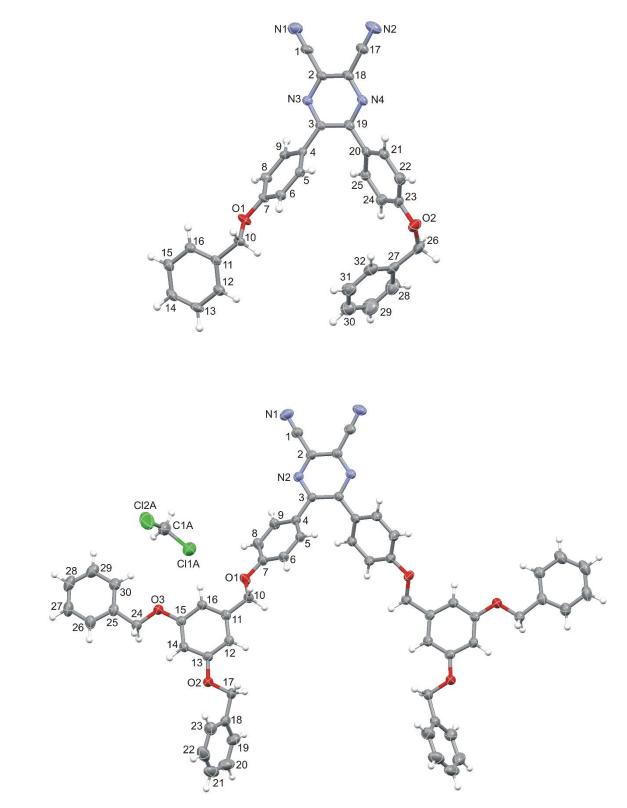


Fig. S25. Molecular structures of 5b (top) and 5c (botom). In 5c only symmetry independent part of the molecule is labeled. The displacement ellipsoids are shown at the 50% of probability level.

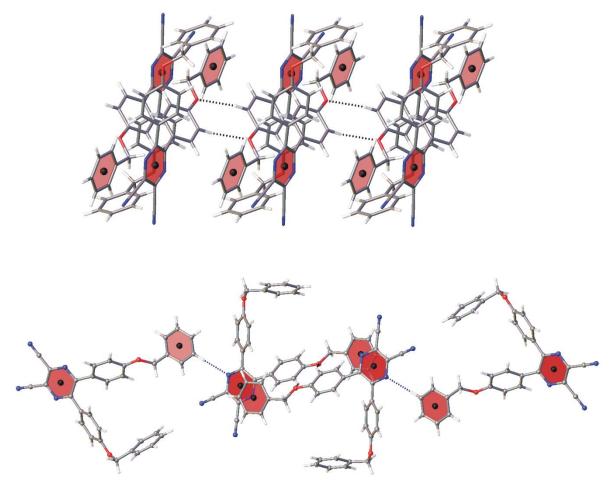


Fig. S26. C-H…O (top) and C-H…N (bottom) interactions in 5b. Hydrogen bonds are marked as dotted lines.

Table S7. Experimental details

For all structures: Z = 4. Experiments were carried out at 130 K. Absorption was corrected for by multiscan methods, *CrysAlis PRO*, Agilent Technologies, 2014. H-atom parameters were constrained.

	5b	5c
Crystal data		
Chemical formula	$C_{32}H_{22}N_4O_2$	$C_{60}H_{46}N_4O_6 \cdot 2(CH_2Cl_2)$
M _r	494.53	1088.86
Crystal system, space group	Monoclinic, $P2_1/n$	Monoclinic, C2/c
a, b, c (Å)	8.2968 (3), 11.2161 (5), 27.629 (1)	23.8249 (7), 15.5643 (4), 16.2565 (4)
β (°)	97.453 (3)	117.473 (3)
$V(\text{\AA}^3)$	2549.38 (17)	5348.4 (3)
Radiation type	Μο Κα	Cu Kα
μ (mm ⁻¹)	0.08	2.47
Crystal size (mm)	$0.50 \times 0.30 \times 0.20$	$0.40\times0.20\times0.20$
Data collection		
Diffractometer	Xcalibur	SuperNova
T_{\min}, T_{\max}	0.991, 1.000	0.210, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	14332, 4651, 3332	12425, 4913, 4091
R _{int}	0.038	0.043
$(\sin \theta / \lambda)_{max} (\text{\AA}^{-1})$	0.602	0.602
Refinement		
$\frac{R[F^2 > 2\sigma(F^2)]}{wR(F^2), S},$	0.046, 0.097, 1.04	0.080, 0.249, 1.05
No. of reflections	4651	4913
No. of parameters	343	344
$\Delta \rangle_{\rm max}, \Delta \rangle_{\rm min} \ (e \ {\rm \AA}^{-3})$	0.18, -0.19	0.65, -0.69

5b		5	ic
C3—C19—C20—C25	39.9 (2)	N2-C3-C4-C9	36.6 (3)
C6—C7—O1—C10	2.2 (2)	C10—O1—C7—C6	-2.7 (4)
C11—C10—O1—C7	176.55 (14)	C7—O1—C10—C11	177.2 (2)
C19—C3—C4—C5	44.6 (2)	O1—C10—C11—C16	-37.6 (3)
C22—C23—O2—C26	-168.45 (17)	C17—O2—C13—C12	7.0 (4)
C27—C26—O2—C23	-79.9 (2)	C24—O3—C15—C16	-178.5 (2)
N3—C3—C4—C5	-132.79 (16)	C24—O3—C15—C14	1.1 (3)
N4-C19-C20-C21	38.7 (2)	C13—O2—C17—C18	177.0 (2)
O1-C10-C11-C12	128.59 (16)	O2—C17—C18—C23	-70.8 (4)
O2—C26—C27—C32	168.44 (17)	O2—C17—C18—C19	105.2 (3)
		O3—C24—C25—C26	-178.8 (2)
		O3—C24—C25—C30	2.8 (4)

 Table S8. Selected torsion angles (°) for 5b and 5c.

Table S9. Dihedral angles (°) between the best planes of aromatic rings in 5b and 5c.

	5b					
pyrazine/ring A	45.00(6)	pyrazine/ring C	39.12 (7)			
pyrazine/ring B	6.24(8)	pyrazine/ring D	76.67(6)			
	5c					
pyrazine/ring A	39.7(1)	pyrazine/ring B1	3.7(2)			
pyrazine/ring B	0.6(2)	pyrazine/ring B2	68.1(1)			
ring B/ring B1	3.5 (2)	ring B/ring B2	67.5 (1)			

Table S10. Hydrogen-bond parameters for 5b.

D—H···A	<i>D</i> —Н (Å)	H…A (Å)	$D \cdots A$ (Å)	D—H···A (°)
C8— $H8$ ···O1 ⁱ	0.95	2.50	3.3391 (19)	147.0
C22—H22…N2 ⁱⁱⁱ	0.95	2.68	3.382 (2)	131.2

Symmetry code(s): (i) -*x*, -*y*+1, -*z*+1; (ii) *x*-1/2, -*y*+1/2, *z*+1/2; (iii) -*x*+3/2, *y*-1/2, -*z*+1/2.

HPLC analysis of purity

Porphyrazine 7

The chromatographic separation was achieved on an octadecylsilane coated column, 150 mm \times 4.6 mm, 5 μ m (Eclipse XDB-C18, Agilent), using phase system indicated below, at a flow rate of 1.0 mL/min

time [min]	МеОН	THF	CH ₂ Cl ₂
0	50	20	30
5	50	20	30
8	20	50	30
15	20	50	30

assay 99.4% measured at $\lambda = 650$ nm

95% measured at $\lambda = 343$ nm

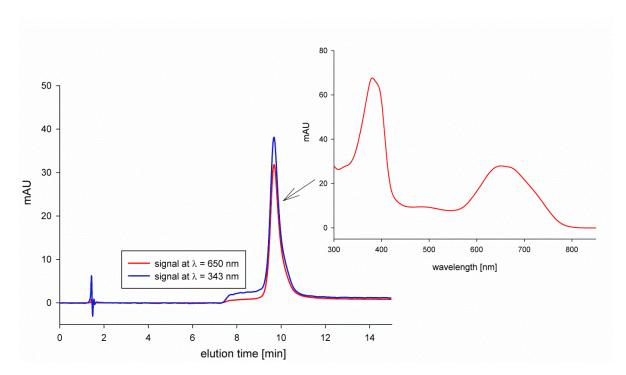
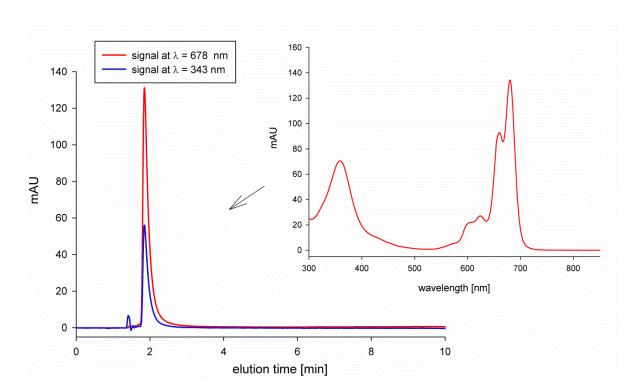



Fig. S27. Chromatogram and UV-vis spectrum of 7.

Porphyrazine 9

The chromatographic separation was achieved on an octadecylsilane coated column, 150 mm \times 4.6 mm, 5 μ m (Eclipse XDB-C18, Agilent), using isocratic elution conditions, at a flow rate of 1.0 mL/min (elution conditions MeOH 55%; THF 15%;CH₂Cl₂ 30%)

assay 100% measured at $\lambda = 678$ nm

94% measured at $\lambda = 343$ nm

Fig. S28. Chromatogram and UV-vis spectrum of 9.

Aggregation study

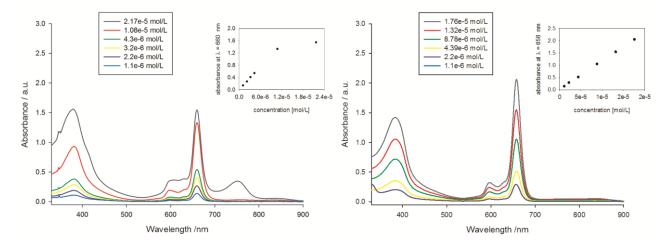


Fig. S29. UV-Vis absorption spectra of 6 in DMF (left) and DMSO (right). Inset presents a correlation between absorbance and concentration.

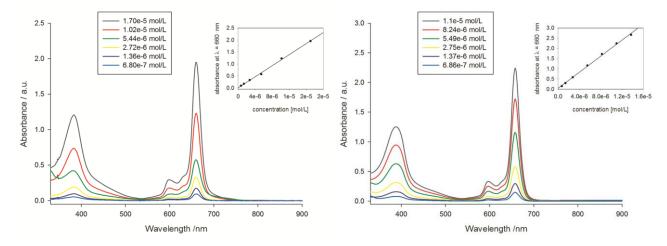


Fig. S30. UV-Vis absorption spectra of 7 in DMF (left) and DMSO (right). Inset presents a correlation between absorbance and concentration.

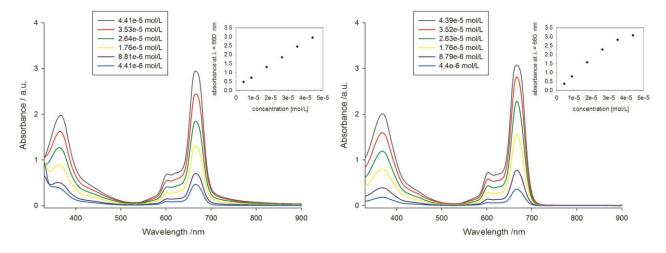


Fig. S31. UV-Vis absorption spectra of 8 in DMF (left) and DMSO (right). Inset presents a correlation between absorbance and concentration.

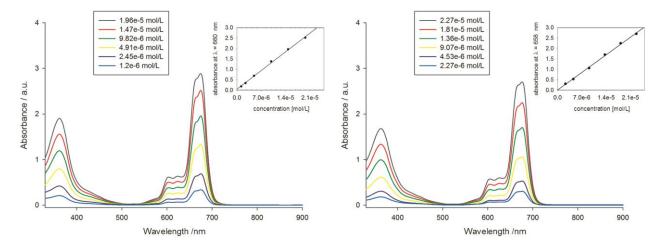


Fig. S32. UV-Vis absorption spectra of 9 in DMF (left) and DMSO (right). Inset presents a correlation between absorbance and concentration.

Compound	DMF										
	а	Δa	b	Δb	Sa	Sb	ta	t _b	tα,f	r	n
6	70175.457	32537.798	0.199	0.332	12655.542	0.129	5.545	1.542	2.571	0.941	6
7	114900.239	7215.501	0.00881	0.061	2806.496	0.0238	40.941	0.369	2.571	0.999	6
8	63404.083	2084.188	0.172	0.056	810.653	0.0217	78.214	7.952	2.571	1.000	6
9	128087.450	7492.866	0.0495	0.083	2914.378	0.0322	43.950	1.538	2.571	0.999	6

Table S11. Statistical parameters of absorbance vs. concentration linear regression in DMF.

Table S12. Statistical parameters of absorbance vs. concentration linear regression in DMSO.

Compound	DMSO										
	а	Δa	b	Δb	Sa	Sb	ta	t _b	ta,f	r	n
6	115800.395	2199.781	0.024	0.022	855.613	0.008	135.342	2.834	2.571	1.000	6
7	204248.508	5013.118	0.02	0.031	1949.871	0.012	104.750	1.627	2.571	1.000	6
8	70887.836	14958.811	0.203	0.399	5818.285	0.155	12.184	1.308	2.571	0.987	6
9	120748.114	7203.957	0.009	0.099	2802.006	0.039	43.093	0.238	2.571	0.999	6

Singlet oxygen measurements

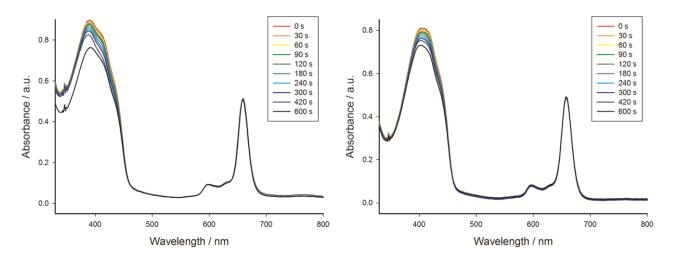


Fig. S33. Changes in the UV-vis spectra of DPBF and 6 in DMF (left) and DMSO (right) during irradiation at Q-band.

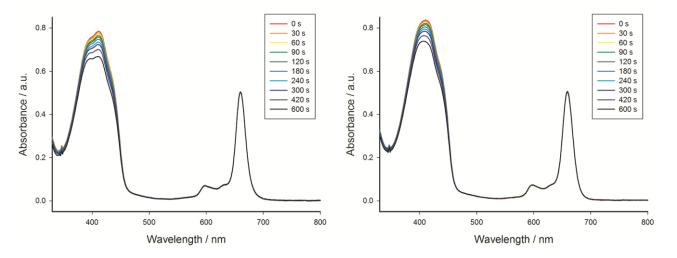


Fig. S34. Changes in the UV-vis spectra of DPBF and 7 in DMF (left) and DMSO (right) during irradiation at Q-band.

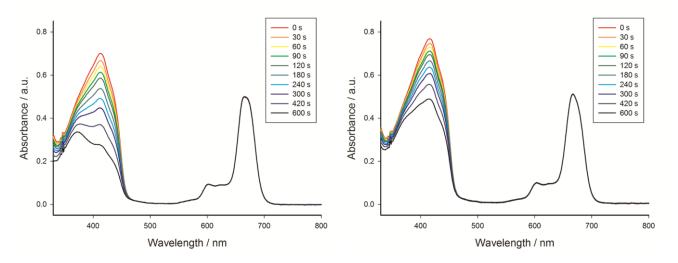


Fig. S35. Changes in the UV-vis spectra of DPBF and 8 in DMF (left) and DMSO (right) during irradiation at Q-band.

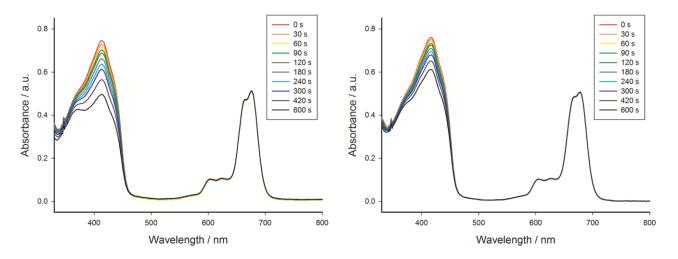


Fig. S36. Changes in the UV-vis spectra of DPBF and 9 in DMF (left) and DMSO (right) during irradiation at Q-band.

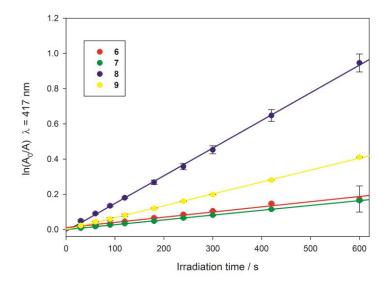


Fig. S37. First-order plots for the oxidation of diphenylisobenzofuran (DPBF) during irradiation of porphyrazine/DPBF solutions in DMF.

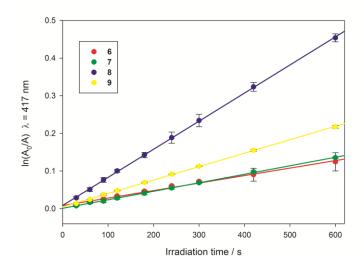


Fig. S38. First-order plots for the oxidation of diphenylisobenzofuran (DPBF) during irradiation of porphyrazine/DPBF solutions in DMSO.

Fluorescence spectra

Steady state fluorescence quantum yields were measured in solutions, using JASCO FP-6200 and 1 cmthick-cells. Absorbance of the solution was kept below 0.1 at the maximum of Q-band, in order to avoid reabsorption of the emitted fluorescence.

Quantum yields were calculated according to equation:

$$\Phi_F = \Phi_F^{st} \frac{\int F_X (1 - 10^{-A_{st}})}{\int F_{st} (1 - 10^{-A_x})} \frac{(n_X)^2}{(n_{st})^2}$$

Here, $\int F_x$ is the area under the emission curve of the sample, $\int F_{st}$ is the area under the emission curve of the standard, A_x and A_{st} are the absorbance of the sample and standard at the excitation wavelength, respectively. n_x is the solvent refractive index for the sample, n_{st} the solvent refractive index for the standard and Φ^{st}_F is the value of the fluorescence quantum yield of the standard. Zinc(II) pthtalocyanine was used as a standard, excitation wavelength was $\lambda = 600$ nm.

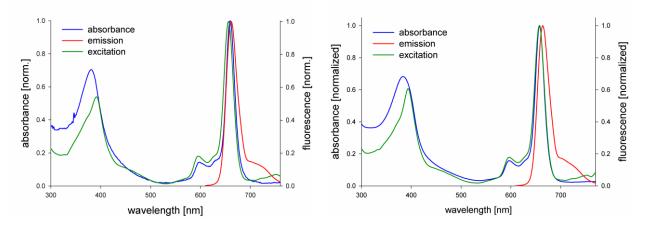


Fig. S39. Absorbance, emission and excitation spectra of 6 in DMF (left) and DMSO (right).

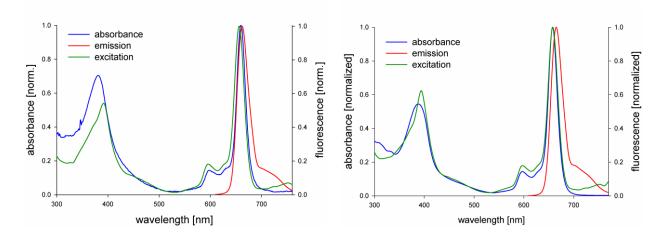


Fig. S40. Absorbance, emission and excitation spectra of 7 in DMF (left) and DMSO (right).

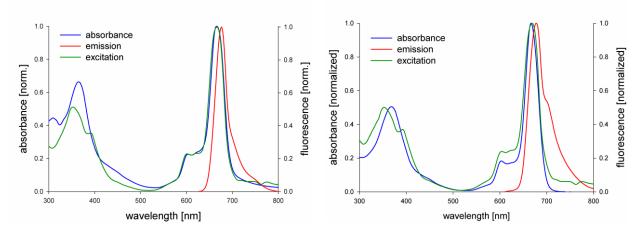


Fig. S41. Absorbance, emission and excitation spectra of 8 in DMF (left) and DMSO (right).

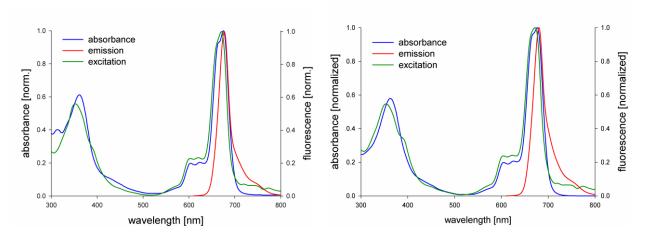
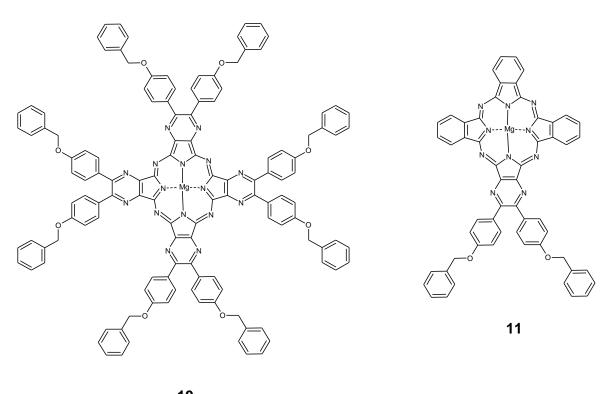
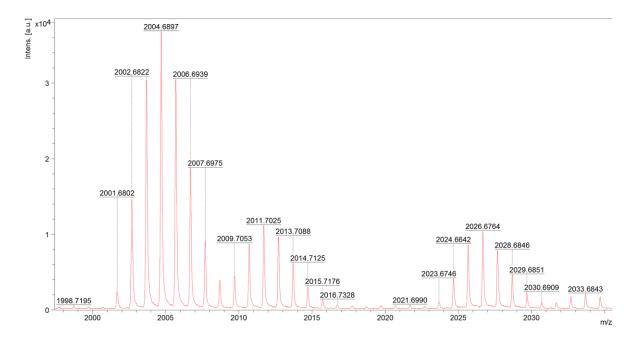
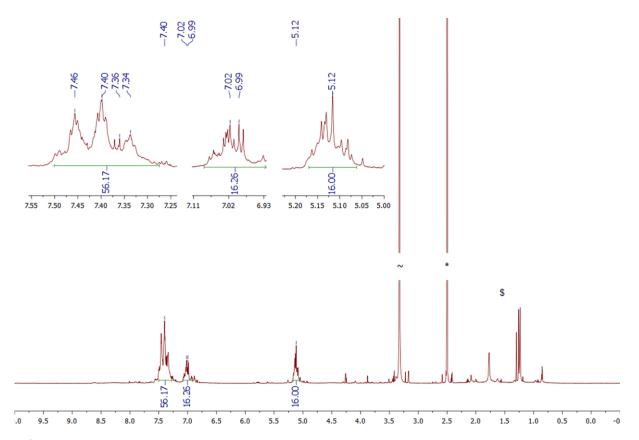



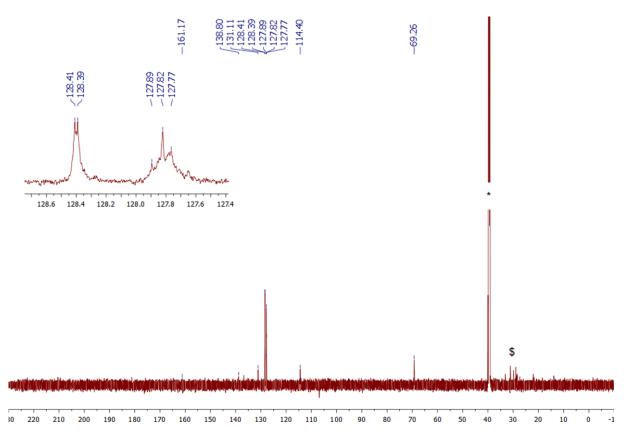
Fig. S42. Absorbance, emission and excitation spectra of 9 in DMF (left) and DMSO (right).

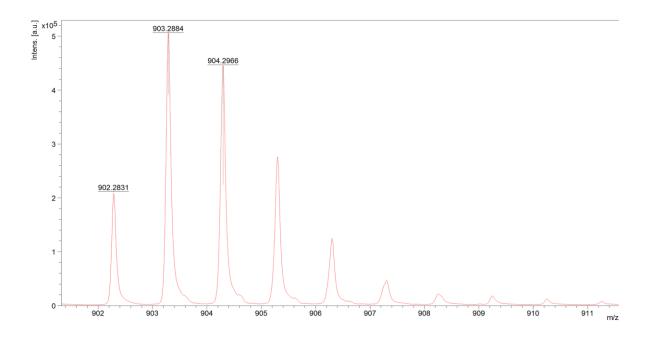

Synthetic approaches towards porphyrazines bearing 4-(benzyloxy)phenyl substituents

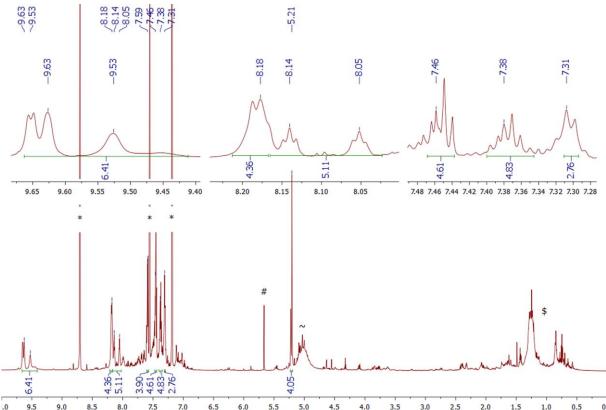
2,3-Dicyanopyrazine derivative **5b**, similarly to its **5a** and **5c** analogues, was used in macrocyclisation reactions leading to porphyrazines, following general procedures described in article. Symmetrical A_4 -type porphyrazine **10** and tribenzoporphyrazine A_3B -type **11** were obtained (**Fig. S43**). Formation of desired chemicals was confirmed by the means of high-resolution mass spectrometry (MALDI-TOF HRMS) – **Fig S44** and **S47**. Low solubility of porphyrazine **10** unabled its purification by means of column chromatography. Crude product has been precipitated from reaction mixture, filtered and rinsed with: CH₂Cl₂, THF, ethyl acetate and acetone. Obtained green powder was subsequently subjected to NMR analysis, using DMSO-d₆ as a solvent. Slightly better solubility was observed for porphyrazine **11**. Crude product was chromatographed on silica gel using DCM, hexanes/ethyl acetate (7:2) and CH₂Cl₂/MeOH (200:1). Subsequently , obtained product was analyzed by means of NMR, using pyridine-d₅ as a solvent. In both cases, strong tendency to form aggregated species resulted in poorly resolved NMR spectra and therefore, uncertain results of the NMR analysis (**Fig. S45**, **S46**, **S48**, **S49**).



10


Fig. S43. Structures of porphyrazines 10 and 11 bearing 4-(benzyloxy)phenyl substituents.


Fig. S44. MALDI-TOF HRMS spectrum of **10.** Calculated mass for $C_{128}H_{88}MgN_{16}O_8$ [M]⁺ 2001,6851, found: *m/z* 2001,6802; for $C_{128}H_{88}MgN_{16}NaO_8$ [M+Na]⁺ 2024,6749, found: *m/z* 2024,6642.


Fig. S45. ¹H NMR spectrum of **10** (800 MHz, DMSO- d_6 , 298 K). The symbols *, ~ and \$ indicate DMSO- d_6 , water and hexane residual peaks, respectively.

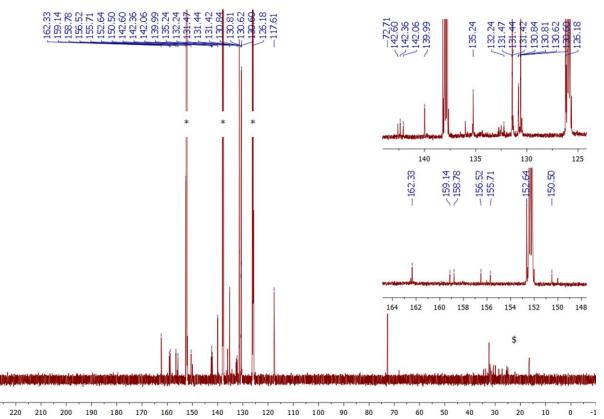

Fig. S46. ¹³C NMR spectrum recorded for **10** (201 MHz, DMSO- d_6 , 298 K). The symbols * and \$ indicate DMSO- d_6 and hexane residual peaks, respectively.

Fig. S47. MALDI-TOF HRMS spectrum of **11.** Calculated mass for $C_{56}H_{35}MgN_{10}O_2$ [M+H]⁺ 903.2795, found: m/z 903.2884.

Fig. S48. ¹H NMR spectrum of **11** (800 MHz, pyridine- d_5 , 298 K). The symbols *, #, ~ and \$ indicate pyridine- d_5 , CH₂Cl₂, water and hexane residual peaks, respectively.

Fig. S49. ¹³C NMR spectrum recorded for **11** (201 MHz, pyridine- d_5 , 298 K). The symbols * and \$ indicate pyridine- d_5 and hexane residual peaks, respectively.