Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Pyridine-functionalized organic porous polymers:

applications in efficient CO₂ adsorption and conversion

Zhenzhen Yang,^a Huan Wang,^{a,b} Guiping Ji,^{a,b} Xiaoxiao Yu^{a,b}, Yu Chen,^{a,b} Xinwei Liu,^{a,b} Cailing Wu,^{a,b} and Zhimin Liu*^{a,b}

^a Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. E-mail: liuzm@iccas.ac.cn.

^b University of Chinese Academy of Sciences, Beijing 100049, China

Table of contents

1.	General experimental methods	.2
2.	Synthetic procedures	.2
Table	2 S1	.3
Figu	re S1	.4
Figu	re S2	.5
Figu	re S3	.5
Figu	re S4	.6
Figu	re S5	.7
3.	NMR characterization of the formamides	.7

1. General experimental methods

Materials

All reagents and solvents were purchased from commercial sources and were used without further purification, unless indicated otherwise. 2,6-di(9H-carbazol-9-yl)pyridine (**CarPy**), **CarPy-CMP** were prepared following procedures reported in the literature (Chem. Commun. 2016, 10.1039/C1036CC09374D.). Preparation of **CarPy-CMP@Ru** was shown below. Ru/C (5 wt%) was purchased from Shanxi Rock New Materials Co. Ltd.

Instrumentation

Liquid ¹H NMR spectra was recorded in CDCl₃ using the residual CHCl₃ as internal reference (7.26 ppm) on Bruck 400 spectrometer. Liquid ¹³C NMR was recorded at 100.6 MHz in CDCl₃ using the residual CHCl₃ as internal reference (77.0 ppm). Gas sorption isotherms were obtained with Micromeritics TriStar II 3020 and Micromeritics ASAP 2020 M+C accelerated surface area and porosimetry analyzers at certain temperature. The samples were outgassed at 120 °C for 8 h before the measurements. Surface areas were calculated from the adsorption data using Brunauer-Emmett-Teller (BET) methods. The pore-size-distribution curves were obtained from the adsorption branches using non-local density functional theory (NLDFT) method. (HR) Transmission electron microscopy (TEM) images were obtained with a JEOL JEM-1011 and JEM-2011F instrument operated at 200 kV. X-ray photoelectron spectroscopy (XPS) was performed on an ESCAL Lab 220i-XL spectrometer at a pressure of $\sim 3 \times 10^{-9}$ mbar (1 mbar = 100 Pa) using Al Ka as the excitation source (1486.6 eV) and operated at 15 kV and 20 mA. The binding energies were referenced to the C_{1s} line at 284.8 eV from adventitious carbon. The content of Fe or Ru was determined by ICP-AES (VISTA-MPX). The reaction mixture was analyzed by means of GC (Agilent 4890D) with a FID detector and a nonpolar capillary column (DB-5) (30 m \times 0.25 mm \times 0.25 μ m). The column oven was temperature-programmed with a 2 min initial hold at 323 K, followed by the temperature increase to 538K at a rate of 20 K/min and kept at 538 K for 10 min. High purity nitrogen was used as a carrier gas.

2. Synthetic procedures

(1) Synthesis of Car-CMP-1@Ru

Ref.: Angew. Chem. Int. Ed. 2014, 53, 8645-8648.

Take the synthesis of **Car-CMP-1@Ru** as a typical example: 100 mg of **Car-CMP-1** were initially dispersed in 100 mL EtOH solution of $RuCl_3 \cdot 3H_2O$ (6.5 mg) to form a uniform suspensionvia tip sonication (500 W, 20 kHz, 38% amplitude power output) for 4 min and then stir for 2 h at room temperature. The mixture was dried under vacuum at 60 °C for 2 h, then put into a quartz tube and heated to 300 °C under H₂ atmosphere and maintained for 2 h.

(2) Typical procedures for the formylation of morpholine

For a typital procedure, in a glovebox, **Car-CMP-1@Ru** (20 mg), morpholine (1 mmol) and MeOH (3 mL) was added successively into a stainless steel autoclave with a Teflon tube (25 mL

inner volume). CO_2 (4 MPa) and then H₂ was charged in the reactor untill the total pressure reached 8 MPa at room temperature. The autoclave was stirred at 130 °C for 24 h. After reaction, the autoclave was cooling to 0 °C then the excess of gas was vented slowly. Dodecane (internal standard) and CH_2Cl_2 (5 mL) was added, stirred vigorously and centrifuged. The upper liquid was analyzed by GC. For catalyst recycling, the catalyst was recycled by filtration, washed with CH_2Cl_2 and EtOH, and then dried under vacuum at 140 °C for 24 h, followed by being reused for the next run. For the substrate scope investigation, the products were isolated by column chromatography on silica gel (eluent: petroleum and dichloromethane) and identified by NMR spectra.

K, 1 atm)						
Entry	Monomer	BET surface areas/m ² g ⁻¹	$^{-}$ CO ₂ capacity /mg g^{-1}	Reference		
1	C1	2220	212	J. Am. Chem. Soc. 2012, 134, 6084.		
2	C2	510	78	Small 2014 , <i>10</i> , 308.		
3	C3	630	84	Small 2014 , <i>10</i> , 308.		
1	C4	660	90	Small 2014 , <i>10</i> , 308.		
5	C5	1050	118	Small 2014 , <i>10</i> , 308.		
5	C6	980	115	Small 2014 , <i>10</i> , 308.		
7	C7	1430	132	Small 2014 , <i>10</i> , 308.		
3	C8	1610	165	Macromolecules 2014 , 47, 5926.		
Э	С9	2440	182	Macromolecules 2014 , 47, 5926.		
10	C10	1110	148	Macromolecules 2014 , 47, 5926.		
11	C11	1320	138	Polym. Chem. 2014 , 5, 3081.		
12	C12	1180	121	Polym. Chem. 2014 , 5, 3081.		
13	C13	611	89	J. Mater. Chem. A 2014 , 2, 1877.		
14	C14	1222	145	J. Mater. Chem. A 2014 , 2, 1877.		
15	C15	893	125	ChemAsian J. 2016 , 11, 294.		
16	C16	1109	160	Polymer 2015 , 70, 52.		
L 7	C17	790	94	Polymer 2015 , 70, 52.		
18	C18	780	103	Polym. Chem. 2015 , 6, 2478.		
19	C19	700	110	Polym. Chem. 2015 , 6, 2478.		
20	C20	1040	151	Polym. Chem. 2015 , 6, 2478.		
21	C21	1130	167	Polym. Chem. 2015 , 6, 2478.		
22	C22	840	162	J. Mater. Chem. A 2014 , 2, 13422.		
23	C23	982	106	J. Mater. Chem. A 2014 , 2, 7795.		
				Macromolecules 2014 , 47, 2875.		
24	C24	952	118	J. Mater. Chem. A 2014 , 2, 7795.		
25	C25	965	123	J. Mater. Chem. A 2014 , 2, 7795.		
26	C26	1187	132	J. Mater. Chem. A 2014 , 2, 7795.		
27	C27	1647	245	Chem. Commun. 2016 , 52, 4454.		

 Table S1. CO2 Adsorption capacities of CMPs derived from various carbazole monomers (273)

Figure S1 (HR)TEM images of **CarPy-CMP@Ru**. Map of Ru⁰ particle sizes distribution was obtained by counting 100 particles. b was the magnified section within the blue dashed line square in a.

Figure S2 a, b, c) XPS spectra of C1s, N1s, Ru3d and Ru3p for CarPy-CMP@Ru. d) EDS profile of CarPy-CMP@Ru.

Figure S3 BET plot of CarPy-CMP@Ru.

1:1).

 CO_2/H_2 . Three parallel experiment has been done for each cycle. Reaction conditions: **1a** 1 mmol, catalyst loading 0.5 mol% Ru based on **1a**, MeOH 3 mL, CO_2 pressure 4 MPa, total pressure ($CO_2 + H_2$) 8 MPa, 130 °C, 24 h. The yield of morpholine-4-carbaldehyde (**2a**) was determined by GC using dodecane as an internal standard. b) TEM images of **Car-CMP-1@Ru**. Map of Ru⁰ particle sizes distribution was obtained by counting 100 particles.

3. NMR characterization of the formamides

¹H NMR (CDCl₃, 400 MHz) δ 3.17 (t, ³J = 5.2 Hz, 2H), 3.31 (t, ³J = 5.2 Hz, 2H), 3.41 (t, ³J = 4.4 Hz, 2H), 3.45 (t, ³J = 4.4 Hz, 2H), 7.81 (s, 1H); ¹³C NMR (CDCl₃, 100.6 MHz) δ 38.89, 44.11, 64.75, 65.68, 159.39.

 1 H NMR (CDCl₃, 400 MHz) δ 2.06 (s, 3H), 2.12 (t, 3 J = 5.2 Hz, 2H), 2.17 (t, 3 J = 5.2 Hz, 2 H), 3.16 (t,

³J = 5.2 Hz, 2H), 3.30 (t, ³J = 4.8 Hz, 2H), 7.77 (s, 1H);

 ^{1}H NMR (CDCl₃, 400 MHz) δ 1.65-1.70 (m, 4H), 3.16 (t, ^{3}J = 6.4 Hz, 2H), 3.27 (t, ^{3}J = 6.4 Hz, 2 H), 8.01 (s, 1H);

 ^{13}C NMR (CDCl_3, 100.6 MHz) δ 22.07, 22.77, 40.71, 43.58, 158.31.

¹H NMR (CDCl₃, 400 MHz) δ 1.36-1.47 (m, 4H), 1.52-1.57 (m, 2H), 3.17 (t, ${}^{3}J$ = 5.6 Hz, 2H), 3.33 (t, ${}^{3}J$ = 5.6 Hz, 2 H), 7.86 (s, 1H);

 ^{13}C NMR (CDCl_3, 100.6 MHz) δ 23.08, 23.60, 25.03, 38.67, 44.87, 158.94.

 ^{1}H NMR (CDCl₃, 400 MHz) δ 0.70-0.74 (m, 6H), 1.33-1.44 (m, 4H), 3.00 (t, ^{3}J = 6.8 Hz, 2H), 3.07 (t, ^{3}J = 7.6 Hz, 2H), 7.87 (s, 1H);

 $^{13}{\rm C}$ NMR (CDCI_3, 100.6 MHz) δ 9.41, 9.85, 19.22, 20.50, 42.23, 47.55, 161.15.

