Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

New journal of chemistry

A simple extraction method for Norfloxacin from Pharmaceutical

wastewater with Magnetic Core-shell Molecularly imprinted polymer

under the aid of Computer simulation

Muchuan Niu ^a, Chen Sun^b, kai Zhang ^a, Geyuan Li ^a, Fizir Meriem ^a, Chuong Pham-Huy^c, Xuanhong Hui^a, Jianrong Shi^{*d}, Hua He^{*a,e,f}

Appendix S1

TableS1 Energies found of individual structures and interaction energy (ΔE) of complexes

Structures	Best riatio	E(kal/mol)	$\Delta E(kal/mol)$
norfloxacin		44.06	
MAA		-16.98	
AA		-29.20	
MAM		-29.84	
AM		-30.76	
N-isoacryamide		-28.88	
4-VP		2.63	
AM- norfloxacin	1:5	-198.53	19.65
AA- norfloxacin	1:6	-179.03	12.97
MAM- norfloxacin	1:6	-186.75	14.09
MAA- norfloxacin	1:3	-47.86	23.98
N-isoacryamide-	1:4	-110.74	14.59
norfloxacin			

supposed to be formed between molecule

Appendix S2 The synthesis steps of magnetic cores

0.02 mol Fe²⁺ and 0.04 mol Fe³⁺ was dissolved in 50 mL deionized water firstly, when the mixture under ultrasonication change into a clear solution , transfer the mixture into a 250 mL three neck round bottom flask and heat the solution until 80 °C. 50 mL amino solution was added drop by drop under the atmosphere of N₂ and magnetic stirring until getting 10-11 of pH. The color of solution changed into black quickly after the amino solution added, which indicate the formation of magnetic particles. The whole synthesis process should sustain for 2 hours. The final magnetic particles were separated in the exist of applied magnetic field. After the magnetic particles to powder in vacuum under 40 °C.

Appendix S3. FTIR spectrogram (Fig S3) and explanation

Fig S1 FT-IR spectrogram of Fe₃O₄, MIP-1 and NIP-1

As Fig S3 shows, 3473 cm^{-1} is the special peak of O-H vibration, which proved the existance of Fe(OH)₃,Fe(OH)₂ and FeOOH. 583, 1134, 1441 cm⁻¹ exist in the three lines, which proved existance of Fe₃O₄. Different intensity of peak indicate that the amount of iron oxide substance is different. MMIP and MNIP possess a special C-H peak at 2890 cm⁻¹ and 2980cm⁻¹,the poignant peak at 1726 cm⁻¹ is resulted by C=O vibration and proved the exist of MAA in both MMIP-1 and MNIP⁻¹. All these special peaks proved that the MIP shell already coated on the surface of magnetic cores. Appendix S4. Pseudo-first-order model and pseudo-second-order model Pseudo-first-order model and pseudo-second-order model were utilized to explain the adsorption process of MMIP-1 for norfloxcin.

The equation of pseudo-first-order model is:

$$\ln(\mathbf{Q}_{e} - \mathbf{Q}_{t}) = \ln \mathbf{Q}_{e} - \mathbf{K}_{1} \mathbf{t}$$
(1)

 Q_e and Q_t (µg·mg⁻¹) means the equilibrate adsorption of norfloxcin and adsorption amount at t (min) respectively; K_1 is the equilibrate rate constant of pseudo-first-order model.

The equation of pseudo-second-order model is:

$$\frac{\mathbf{t}}{\mathbf{Q}_{\mathrm{t}}} = \frac{\mathbf{t}}{\mathbf{Q}_{\mathrm{e}}} + \frac{1}{\mathbf{K}_{2}\mathbf{Q}_{\mathrm{e}}^{2}} \tag{2}$$

 Q_e and Q_t (µg·mg⁻¹) means the equilibrate adsorption of norfloxcin and adsorption amount at $t \pmod{1}$ respectively; K_2 is the equilibrate rate constant pseudo-second-order model.

According to the data of adsorption kinetic, the Table S2 can be get below.

Table S	2 Pseudo	-first-order	model and	pseudo-seco	nd-order r	nodel results
	~ ~ ~ ~ ~	0 0 0 0 0 0 0 0		Lange and a		

	pseudo-first-order model			pseudo-second-order model		
Material	Qe,cal (µg mg ⁻¹)	k ₁ (min ⁻¹)	R^2	Qe,cal (µg mg ⁻¹)	k_2 (µg mg ⁻¹ min ⁻¹)	R^2
MMIP-1	52.59	0.029	0.864	165.28	0.003	0.999
MNIP-1	17.16	0.019	0.979	50.73	0.003	0.998

Pseudo-second-order model is much more suitable for MMIP-1 and MNIP-1 due to a higher R² and a more approximate equilibrate adsorption amount. Combined with rate controlling study, pseudo-order model verified further that the whole rate of adsorption influenced by chemical adsorption due to higher strength and specificity of hydrogen bond.

Appendix S5.

Fig S2 Optimization of SPE process (Amount of MMIP-1 (Fig S2A) extraction time (Fig S2B) elution solvents (Fig S2C), elution time (Fig S2D).)

