Туре	Sensing system	Linear range (ng mL ⁻¹)	Detection limit (ng mL ⁻¹)	Reference
HPLC	Reversed-phase HPLC	0~111	800	[1]
ELISA	Competitive enzyme-linked immunosorbent assay using a commercially available monoclonal antibody against hen egg white lysozyme.	3.125~800	2.73	[2]
Resonance Rayleigh scattering (RRS)	Cd-doped ZnSe quantum dots as probe	80~2000	0.65	[3]
Voltammetric	Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme	500~5×10 ⁴	200	[4]
Colorimetric	Dual-readout sensor (colorimetric andfluorometric) with triazolylcoumarin molecules quenching by AuNPs	50~2.5×10 ⁴	23	[5]
	Gold nanoparticles (AuNPs) covalently bonded with human serum albumin (HSA) as sensor	$1.44 \times 10^{3} \sim 1.4$ 4×10^{4}	720	[6]
Fluorescence	Fluorescence turn-on system based on fluorophore labeled aptamer	0~1.44 ×10 ⁶	1.45	[7]
	Fluorescence Turn-On system based on CuInS2 quantum dots	0.6~4.6	288	[8]
	Fluorescence probe based on L-cysteine-capped CdTe quantum dots	0~1000	28.33	This work

Table S1. Comparison of performance of different methods for lysozyme detection

Table S2. Comparison of performance of different methods for trypsin detection

Туре	Sensing system	Linear range (ng mL ⁻¹)	Detection limit (ng mL ⁻¹)	Reference
HPLC	HPLC method and Mass Spectrometry		106	[9]
Colorimetric	Au-NPs incubating with Arg ₆ as sensor	0~8.0	1.6	[10]
Electrochemistry	Amperometric biosensor	1~250	1.0	[11]
Fluorescence	Fluorescence turn-on strategy based on conjugated polyelectrolyte PFP-CO ₂ Na	120~960	40.8	[12]
	Fluorescence "Turn-On" Detection Using Conjugated Polyelectrolyte	0~8000	52.5	[13]
	Graphene quantum dots based biosensor	0~9.6×10 ⁶	33	[14]
	Fluorescent probe based on BSA-stabilized gold nanoclusters	$10 - 1 \times 10^{5}$	2.0	[15]
	Optical nanoprobe based on Mn-doped ZnSe quantum dots	0.100~1.2×10 ⁶	40	[16]
	Fluorescence probe based on L-cysteine-capped CdTe quantum dots	0~500	8.35	This work

Reference:

[1] L. Pellegrino, A. Tirelli. A sensitive HPLC method to detect hen's egg white lysozyme in milk and dairy products. Int Dairy J. 10 (2000) 435-442

http://dx.doi.org/10.1016/S0958-6946(00)00065-0

[2] N. Schneider, I. Weigel, K. Werkmeister, M. Pischetsrieder. Development and Validation of an Enzyme-Linked Immunosorbent Assay (ELISA) for Quantification of Lysozyme in Cheese. J Agr Food Chem. 58 (2009) 76-81 10.1021/jf9025019

[3] Z. Cai, G. Chen, X. Huang, M. Ma. Determination of lysozyme at the nanogram level in chicken egg white using Resonance Rayleigh-scattering method with Cddoped ZnSe quantum dots as probe. Sensors and Actuators B: Chemical. 157 (2011) 368-373 <u>http://dx.doi.org/10.1016/j.snb.2011.04.058</u>

[4] A.K.H. Cheng, B. Ge, H.-Z. Yu. Aptamer-Based Biosensors for Label-Free Voltammetric Detection of Lysozyme. Anal Chem. 79 (2007) 5158-5164

10.1021/ac062214q

[5] H. Zheng, S. Qiu, K. Xu, L. Luo, Y. Song, Z. Lin, L. Guo, B. Qiu, G. Chen. Colorimetric and fluorometric dual-readout sensor for lysozyme. Analyst. 138 (2013) 6517-6522 10.1039/c3an01194a

[6] Y.-M. Chen, C.-J. Yu, T.-L. Cheng, W.-L. Tseng. Colorimetric Detection of Lysozyme Based on Electrostatic Interaction with Human Serum Albumin-Modified Gold Nanoparticles. Langmuir. 24 (2008) 3654-3660 10.1021/la7034642 [7] D. Liao, J. Chen, W. Li, Q. Zhang, F. Wang, Y. Li, C. Yu. Fluorescence turn-on detection of a protein using cytochrome c as a quencher. Chem Commun. 49 (2013) 9458-9460 10.1039/c3cc43985b

[8] S. Liu, W. Na, S. Pang, F. Shi, X. Su. A label-free fluorescent detection strategy for lysozyme assay based on CuInS2 quantum dots. Analyst. (2014) 10.1039/c4an00160e

[9] M.M. Vestling, C.M. Murphy, C. Fenselau. Recognition of trypsin autolysis products by high-performance liquid chromatography and mass spectrometry. Anal Chem. 62 (1990) 2391-2394 10.1021/ac00220a025

[10] W. Xue, G. Zhang, D. Zhang. A sensitive colorimetric label-free assay for trypsin and inhibitor screening with gold nanoparticles. Analyst. 136 (2011) 3136 3141 10.1039/c1an15224f

[11] R.E. Ionescu, S. Cosnier, R.S. Marks. Protease Amperometric Sensor. Anal Chem. 78 (2006) 6327-6331 10.1021/ac060253w

[12] Y. Wang, Y. Zhang, B. Liu. Conjugated Polyelectrolyte Based Fluorescence Turn-On Assay for Real-Time Monitoring of Protease Activity. Anal Chem. 82(2010) 8604-8610 10.1021/ac101695x

[13] L. An, L. Liu, S. Wang. Label-Free, Homogeneous, and Fluorescence "Turn-On" Detection of Protease Using Conjugated Polyelectrolytes. Biomacromolecules.
 10 (2008) 454-457 10.1021/bm801036h

[14] X. Li, S. Zhu, B. Xu, K. Ma, J. Zhang, B. Yang, W. Tian. Self-assembled graphene quantum dots induced by cytochrome c: a novel biosensor for trypsin with remarkable fluorescence enhancement. Nanoscale. 5 (2013) 7776 10.1039/c3nr00006k

[15] L. Hu, S. Han, S. Parveen, Y. Yuan, L. Zhang, G. Xu. Highly sensitive fluorescent detection of trypsin based on BSA-stabilized gold nanoclusters. Biosens
 Bioelectron. 32 (2012) 297-299 10.1016/j.bios.2011.12.007

[16] X. Gao, G. Tang, Y. Li, X. Su. A novel optical nanoprobe for trypsin detection and inhibitor screening based on Mn-doped ZnSe quantum dots. Anal Chim Acta.

743 (2012) 131-136 10.1016/j.aca.2012.07.007