Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

"Sonochemistry-An innovative opportunity towards a one-pot three-component synthesis of novel pyridylpiperazine derivatives catalysed by Meglumine in water"

Sumaiya Tabassum, Santhosh Govindaraju,

and Mohamed Afzal Pasha*

Department of Studies in Chemistry, Central College Campus, Bangalore University,

Palace Road, Bengaluru-560001. INDIA.

E-mail address: m_af_pasha@ymail.com; mafpasha@gmail.com

Sl. No.	Content
1	Sample Green Metrics calculation for 4a
2	¹ H, ¹³ C NMR and HRMS of compounds 4(a-v)

Raw Material	(in mg)	Product and waste	(in mg)
Salicylaldehyde	122	Product	422
Pyridyl piperazine	162	Waste	61.4
4-bromo phenyl boronic acid	199	Recovered Meglumine (98%)	19.1
Meglumine	19.5		
Total	502.5	Total	502.5

Consideration:

- Water used for the workup was not considered for the calculation.
- The solvent used for recrystallization was not considered.

E-factor (E)	$= \underline{61.4 \text{ mg of waste}}$
	422 mg of product
	= 0.1454
Mass Intensity	= 502.5 mg of raw material used
	422 mg of product
	= 1.1907
Process Mass Intensity (PMI)	= E factor $+$ 1
	= 0.1454 + 1
	= 1.1454
Atom economy	= Molecular mass of the desired product
-	Molecular mass of all the reactant
	= 422
	$\overline{122 + 162 + 199}$
	= 422
	483
	= 0.8737
Generalised Reaction Mass	= 1
efficiency (RME)	$\overline{1 + E}$
	= 1
	1 + 0.1454
	= 0.8730
Kernal RME	= Atom economy \times Yield
	$= 0.8737 \times 0.98$
	= 0.8563
Curzon's RME	= Mass of the product
	Mass of the reactants $+$ catalyst
	=0.422
	$\overline{0.483 + 19.5}$
	= 0.0211
Environmental impact factor	= 1 -1
based on molecular weight (E_{mw})	Atom economy
	= <u>1</u> - 1
	0.8737

	= 1.1445 - 1 = 0.1445
Yield (%)	$= \underbrace{\text{Actual yield}}_{\text{Theoretical yield}} \times 100$ $= \underbrace{413.6}_{422} \times 100$ $= 0.98 \times 100$ $= 98\%$

¹H NMR spectrum of 4a

HRMS of 4a

¹H NMR spectrum of 4b

¹³C NMR spectrum of 4b

HRMS of 4b

¹H NMR spectrum of 4c

HRMS of 4c

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 15 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-5 CI: 0-1 4 co 32 (0.751) TOF MS ES-

¹H NMR spectrum of 4d

¹³C NMR spectrum of 4d

HRMS of 4d

¹H NMR spectrum of 4e

¹³C NMR spectrum of 4e

HRMS of 4e

¹H NMR spectrum of 4f

¹³C NMR spectrum of 4f

HRMS of 4f

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 18 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass)

¹H NMR spectrum of 4g

¹³C NMR spectrum of 4g

HRMS of 4g

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions

18 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-5 4: 27 (0 528)

¹H NMR spectrum of 4h

HRMS of 4h

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 17 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-5 Br: 0-1 Cl: 0-1 4h 40 (2.328)

¹H NMR spectrum of 4i

¹³C NMR spectrum of 4i

HRMS of 4i

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 17 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-5 CI: 0-2 4i 40 (1.108)

¹H NMR spectrum of 4j

HRMS of 4j

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 17 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-5 CI: 0-2 4] 49 (1.108) TOF MS ES-

¹H NMR spectrum of 4k

¹³C NMR spectrum of 4k

HRMS of 4k

Elemental Composition Report

Single Mass Analysis

¹H NMR spectrum of 4l

HRMS of 41

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 17 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-5 Cl: 0-1 4I 27 (0.315) TOF MS ES-

¹H NMR spectrum of 4m

¹³C NMR spectrum of 4m

HRMS of 4m

Page 1

Elemental Composition Report

Single Mass Analysis

¹H NMR spectrum of 4n

220 200 180 160 140 120 100 80 60 40 20 ppm

HRMS of 4n

¹³C NMR spectrum of 40

HRMS of 40

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions

14 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 Br: 0-1 40 22 (0.571) TOF MS ES-Intens.

¹H NMR spectrum of 4p

HRMS of 4p

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 17 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-5 CI: 0-1

¹H NMR spectrum of 4q

¹³C NMR spectrum of 4q

HRMS of 4q

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

¹H NMR spectrum of 4r

¹³C NMR spectrum of 4r

HRMS of 4r

Page 1

Elemental Composition Report

Single Mass Analysis

¹H NMR spectrum of 4s

HRMS of 4s

¹H NMR spectrum of 4t

HRMS of 4t

Elemental Composition Report

Page 1

+MS

m/z

Single Mass Analysis Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotopic peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 19 formula(e) evaluated with 1 results within limits (up to 20 best isotopic matches for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-5 4t 31 (1.037) TOF MS ES-Intens. X10⁷ 6 374.2230 4 2 280 300 320 360 380 400 420 440 340 Meas. m/z # 374.2230 1 m/z err [mDa] err [ppm] mSigma rdb e_i Conf N-Rule 2232 0.5 1.7 8.7 12.0 even ok Formula Score C 24 H 28 N 3 O 100.00 374.2232

¹H NMR spectrum of 4u

¹³C NMR spectrum of 4u

HRMS of 4u

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 PPM / DBE: min = -1.5, max = 100.0 Element prediction: Off

¹H NMR spectrum of 4v

¹³C NMR spectrum of 4v

HRMS of 4v

