Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Electronic Supplementary Information

Effective Ensemble System for Identification of CN⁻, Based on Cobalt (II)

Complex: Mimicking Logic Gate[†]

Nirma Maurya, Ashok Kumar Singh

Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee-247667, India *E-mail: <u>akscyfcy@iitr.ernet.in</u>

ESI Fig. S1: Interaction of 2a with 10 eq. of metal ions (a) absorption spectra (b) emission spectra in H_2O -DMF (1:9, v/v, HEPES buffer 7.4).

ESI Fig. S2: Benesi-Hilderbrand Plot for the binding constant of **2a** towards Co^{2+} (a) absorbance (b) emission spectra.

ESI Fig. S3: Effect of pH (a) and water content (b) on emission intensity of $2a+Co^{2+}$ complex.

ESI Fig. S4: Benesi-Hilderbrand Plot for the binding constant of $2a + Co^{2+}$ complex towards CN^{-} absorbance spectra (a) (0-1.4) eq. CN^{-} (b) (1.4-3.0) eq. CN^{-} and (c) emission spectra.

ESI Fig. S5: (a) Calibration curve for $2a+Co^{2+}$ complex and (b) calibration sensitivity for CN^{-} ion in H₂O-DMF (1:9, v/v, HEPES buffer 7.4).

ESI Fig. S6: IR spectra of (a) 2a+Co²⁺ complex and (b) 2a +Co²⁺+CN⁻ complex.

ESI Fig. S7: Mass spectrum of 2a+Co²⁺ complex.

ESI Fig. S8: Mass spectrum of 2a +Co²⁺+CN⁻ adduct.

ESI Fig. S9: FTIR spectrum of 2a.

ESI Fig. S10: ¹H NMR spectrum of 2a in DMSO- d_6 .

ESI Fig. S11: ¹³C spectrum of 2a in CDCl₃

ESI Fig. S12: Mass spectrum of 2a.

ESI Fig. S13: ¹H NMR spectrum of 2b in CDCl₃

ESI Fig. S14: ¹³C spectrum of 2b in CDCl₃.

ESI Fig. S15: ¹H NMR spectrum of 1 in CDCl₃.

ESI Fig. S16: ¹³C spectrum of 1 in CDCl₃.

ESI Fig. S17: (a) Absorption titration spectra (b) Emission titration spectra of 2b upon addition of Co^{2+} in H₂O-DMF (1:9, v/v, HEPES buffer 7.4).

Table S1: Recovery analysis of spiked CN⁻ concentration in deionized water, river water and tap water samples^a.

Experimental Section

Chemical and Instrumentation

All reagents and solvents for experimental work were taken from Sigma–Aldrich. DMF solvent was dried with the help of CaCl₂ as drying agent and then stored on molecular sieve after distillation process (under reduced pressure). CHNS (carbon, hydrogen, nitrogen, sulfur) elemental analysis was supported by using a vireo MICROV3.1.1. IR spectra were recorded with Perkin Elmer FT-IR 1000 spectrophotometer (KBr solid film). Specord S600 Thermo-Scientific PC double beam spectrophotometer used for absorption spectra with quartz cuvette of path length 1 cm. Horiba RF-5301PC was used for emission spectra with standard quartz cell of path length 3 cm. The NMR spectra were recorded in JEOL 400 MHz spectrophotometer by applying tetramethylsilane (TMS) as an internal standard. The cyclic voltammograms were note down with a CHI760E Electro analyzer three-electrode cell with glassy carbon as the working electrode, Hg/HgCl₂ as the reference electrode, Pt wire as the counter electrode and 0.1 M tetrabutylammonium perchlorate (TBAP) was used as the supporting electrolyte on 0.1V s⁻¹ scan rate.

ESI Fig. S1: Interaction of 2a with 10 eq. of metal ions (a) absorption spectra (b) emission spectra in H_2O -DMF (1:9, v/v, HEPES buffer 7.4).

ESI Fig. S2: Benesi-Hilderbrand Plot for the binding constant of **2a** towards **Co**²⁺ (a) absorbance (b) emission spectra.

ESI Fig. 3 Effect of pH (a) and water content (b) on emission intensity of $2a+Co^{2+}$ complex.

ESI Fig. S4: Benesi-Hilderbrand Plot for the binding constant of $2a + Co^{2+}$ complex towards CN^{-} absorbance spectra (a) (0-1.4) eq. CN^{-} (b) (1.4-3.0) eq. CN^{-} and (c) emission spectra.

Sensitivity and Detection Limit for CN⁻: For detections limit 7 sample of $2a+Co^{2+}$ complex (5 µM) was prepared and plot a linear calibration curve which corresponding to change in emission intensities. The estimated standard deviation was found to be 132.84. The calibration sensitivity (m = 3222.748) for CN⁻ was predictable from the slope of the fluorescence curve obtained between change in fluorescence intensities (F-F₀) versus CN⁻ concentration. The F and F₀ indicate the emission intensities of $2a+Co^{2+}$ complex in the presence and absence of CN⁻, respectively. Limit of detection (LOD) estimated using equation LOD = $3\sigma/m$. Where, σ illustrates standard deviation for blank solution of $2a+Co^{2+}$ and *m* calibration sensitivity for CN⁻.

ESI Fig. S5: (a) Calibration curve for $2a+Co^{2+}$ complex and (b) calibration sensitivity for CN^{-} ion in H₂O-DMF (1:9, v/v, HEPES buffer 7.4).

ESI Fig. S6: IR spectra of (a) $2a+Co^{2+}$ complex and (b) $2a+Co^{2+}+CN^{-}$ complex.

ESI Fig. S7: Mass spectrum of 2a+Co²⁺ complex.

ESI Fig. S8: Mass spectrum of **2a** +Co²⁺+CN⁻ adduct.

ESI Fig. S9: FTIR spectrum of 2a.

ESI Fig. S10: ¹H NMR spectrum of **2a** in d_6 DMSO.

ESI Fig. S11: ¹³C spectrum of 2a in CDCl₃

ESI Fig. S12: Mass spectrum of 2a.

ESI Fig. S13: ¹H NMR spectrum of 2b in CDCl₃

¹**H NMR** (CDCl₃-400MHz) δ/ppm: 15.88 (-OH, s 1H), 7.88-7.97 (m 4H, J-36), 7.54-7.61 (m 3H J-28), 7.38-7.41 (t 2H J-12), 7.26 (s 1H), 2.62 (s 3H), 2.43 (s 3H).

ESI Fig. S14: ¹³C spectrum of 2b in CDCl₃.

¹³**C NMR** (CDCl₃ -100MHz) δ/ppm: 182.5, 177.6, 162.8, 152.2, 135.5, 134.3, 133.5, 132.8, 129.0, 129.0, 128.7, 127.9, 127.3, 125.9, 125.3, 123.8, 122.2, 119.8, 116.6, 98.4, 21.1, 20.9.

ESI Fig. S15: ¹H NMR spectrum of 1 in CDCl_{3.}

¹**H NMR** (CDCl₃-400MHz) δ/ppm: 17.74 (-OH, s 1H) 7.84 (s 1H), 7.48-7.50 (d 1H J-8), 7.19-7.21 (d 1H J-8), 2.78 (s 3H), 2.43 (s 3H).

ESI Fig. S16: ¹³C spectrum of 1 in CDCl₃.

¹³C NMR (CDCl₃ -100MHz) δ/ppm: 206.2, 178.9, 160.4, 153.0, 137.4, 134.5, 125.1, 116.9, 114.9, 101.5, 30.2, 20.9.

ESI Fig. S17: (a) Absorption titration spectra (b) Emission titration spectra of upon addition of $Co^{2+} H_2O-$ DMF (1:9, v/v, HEPES buffer 7.4).

Spiked Concentration(µM)	Deionized water		River water		Tap water	
	Found (µM)	Recovery (%)	Found (µM)	Recovery (%)	Found (µM)	Recovery (%)
0.00	0.01		0.06		0.02	
10	10.00	100 ± 1.2	10.16	101.6 ± 2.4	10.05	100.5 ± 3.8
20	19.98	99.9 ± 2.1	20.26	101.3 ± 3.1	20.08	100.4 ± 1.9

Table S1: Recovery analysis of spiked CN⁻ concentration in deionized water, river water and tap water samples^a.

^aMean value ± standard deviation (triplicate measurements)