Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

A novel histidine functionalized 1,8-naphthalimide-based fluorescent chemosensor for selective and sensitive detection of

Hg²⁺ in water

You-Ming Zhang*, Kai-Peng Zhong, Jun-Xia Su, Xiao-Peng Chen, Hong Yao, Tai-Bao Wei and Qi Lin*

Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China

Table of Contents

1. Fig.S1. ¹HNMR spectrum of Z₁ in DMSO-d₆.

2. Fig. S2. ¹³C NMR spectrum of Z₁ in DMSO-d₆.

3. Fig. S3. ESI-MS spectrum of Z₁.

4. Fig.S4. (a) Fluorescence emission data for a 1:10 mixture of **Z** (2.0×10^{-5} M) and different metal ions, as their perchlorate salts, in water.($\lambda ex=343$ nm). (b) Visual fluorescence emissions of sensor **Z** after addition of various metal ions (10 equiv.) in water on excitation at 384 nm using UV lamp.

5. Fig. S5. A plot of fluorescence intensity of the sensor \mathbb{Z} (2.0×10⁻⁵ M, water solution) depending on the concentration of Hg²⁺ in the range from 0 to 8 equivalents.

6. Figure. S6. Non-linear least square fitting of intensity vs concentration of Hg^{2+} using 1:1 complex model.

7. Fig. S7. Determination of detection limit of Hg^{2+} .

8. Figure S8 Influence of pH on the fluorescence of Z and $Z+Hg^{2+}$ in HEPES buffered solution in water.

9. Fig. S9 Partial ¹H NMR spectra of **Z** (0.05 M, D_2O), and **Z** in the presence of varying amounts of Hg²⁺.

10. Fig. S10. ESI-MS spectrum of Z+Hg²⁺ complex.

Fig. S2 13 C NMR spectrum of Z₁ in DMSO-d₆.

Figure S3 ESI-MS spectrum of Z₁.

Figure S4 (a) Fluorescence emission data for a 1:10 mixture of **Z** (2.0×10^{-5} M) and different metal ions, as their perchlorate salts, in water.($\lambda ex=343$ nm). (b) Visual fluorescence emissions of sensor **Z** after the addition of various metal ions (10 equiv.) in water on excitation at 384 nm using UV lamp.

Fig. S5 A plot of fluorescence intensity of the sensor Z (2.0×10^{-5} M, water solution) depending on the concentration of Hg²⁺ in the range from 0 to 8 equivalents.

Figure S6 Non-linear least square fitting of intensity vs concentration of Hg²⁺ using 1:1 complex model.

Figure S7 Plot of the intensity at 384 nm for a mixture of Z and Hg²⁺ in water in the range 1.0×10^{-7} – 2.0×10^{-6} M (λ ex= 343 nm). Linear Equation: Y = -102.950X+536.227, R² = 0.9903

$$\delta = \sqrt{\frac{\sum (F_0 - F_1)^2}{N - 1}} = 6.069, K=3$$

 $S=1.03\times 10^8$

 $\texttt{LOD=K} \times \delta \ / \ S$

LOD=1.785 \times 10⁻⁷ M

 F_0 is the fluorescence intensity of Z; F_1 is the average of the F_0 .

Figure S8 Influence of pH on the fluorescence of Z and $Z+Hg^{2+}$ in HEPES buffered solution in

water.

Fig. S9 Partial ¹H NMR spectra of Z (0.05 M, D_2O), and Z in the presence of varying amounts of Hg^{2+} .

Measurement of fluorescence quantum yields

Fluorescence quantum yields were determined by the following equation.

$$\Phi = \Phi_R \times \frac{I}{I_R} \frac{A_R}{A}$$

Where Φ is fluorescence quantum yield, I is the integrated fluorescence intensity and A is the optical density (absorption). The subscript R refers to the reference of Quinine hemesulfate salt."

Figure S10 ESI-MS spectrum of Z+Hg²⁺ complex.