Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information for

Two Uranyl Heterocyclic Carboxyl Compounds with Fluorescent Properties as High Sensitivity and Selectivity Optical Detectors for Nitroaromatics

Shuang Li,^a Li Xian Sun,^b Jue Chen Ni,^a Zhan Shi,^c Yong Heng Xing,^{*a} Di Shang,^a Feng Ying Bai^{*a}

^a College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian City,

116029, China. E-mail: xingyongheng2000@163.com, baifengying2000@163.com

^b Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology,

Guilin 541004, P.R. China.

^c State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry,

Jilin University, Changchun 130012, P.R. China

Supplementary Index

1. Infrared Spectra	pS2
2. The figure of structure	pS3
3. TG analyses	pS3
4. PXRD	pS4
5. UV-vis Spectra	pS4
6. Band gap	pS4
7. Fluorescence Spectroscopy	p85
8. Table for bond angles	pS9

1. Infrared Spectra

(a)

(b)

Figure S3. IR spectra of compounds: (a) for 1, (b) for 2.

2. The figure of structure

Figure S2. 2D of the compound 2 with the hydrogen bonds of C4-H4…N3.

3. TG analyses

Figure S4. TG curves of compuonds: (a) for **1**, (b) for **2**.

4. PXRD

Figure S5. Powder X-ray diffraction patterns for compounds: (a) for 1, (b) for 2.

5. UV-vis Spectra

Figure S6. Solid-state UV-vis absorption spectra: (a) for compound 1, (b) for compound 2.

6. Band gap

Figure S7. The band gap of the ligands and the two compounds:(a) for H₂L₁, (b) for 1, (c) for HL₂, (d) for 2.

7. Fluorescence Spectroscopy

Figure S8. (a) Luminescence quenching of **2** dispersed in H_2O by gradually increasing TNP concentration; (b) the detection limit of TNP for **2**.

Figure S9. Luminescence quenching of compound 1 dispersed in H_2O by gradually increasing different quenchers' concentration: (a) DNT, (b) p-Nitroaniline, (c) m-Dinitrobezene, (d) sodium nitrobenzene sulfonate, (e) NB, (f) Benzene.

Figure S10 Luminescence quenching of compound **2** dispersed in H_2O by gradually increasing different quenchers' concentration: (a) DNT, (b) p-Nitroaniline, (c) m-Dinitrobezene, (d) sodium nitrobenzene sulfonate, (e) NB, (f) Benzene.

Figure S11. Plot of fraction of luminescence intensity of 2 vs. concentration of analytes. I_0 and I are the luminescence intensities in the absence and presence of nitroaromatics, respectively.

(a)

(b)

Figure S12. For **2**, (a) linear relationships of the quenching are fluorescence intensity ratio and quencher concentration; (b) at different concentrations, the value of the fluorescence intensities and the quencher ratios.

Figure S13. UV absorption of different quenchers with compound **2**: TNP, DNT, p-Nitroaniline, m-Dinitrobezene, Sodium nitrobenzene sulfonate and NB, respectively.

8. Table for bond angles

Table S1. The main bond lengths (Å) and angles (deg) for compounds 1 and 2*

compound 1					
U(1)-O(1) ^{#1}	1.766(7)	U(1)-O(2)	2.326(6)	U(1)-O(3)#2	2.402(12)
U(1)-O(4) ^{#2}	2.837(12)				
O(1) ^{#1} -U(1)-O(1)	179.998(1)	O(3) ^{#3} -U(1)-O(4) ^{#2}	134.8(4)	O(2)-U(1)-O(3)#2	106.5(4)
O(1)-U(1)-O(4) ^{#3}	105.2(3)	O(2)-U(1)-O(4) ^{#3}	112.7(3)	O(1)-U(1)-O(3)#2	95.7(4)
O(1)-U(1)-O(2)	90.9(3)	O(1)-U(1)-O(2)#1	89.1(3)	O(1)-U(1)-O(3)#3	84.3(4)
O(1)-U(1)-O(4) ^{#2}	74.8(3)	O(2)-U(1)-O(3) ^{#3}	73.5(4)	O(2)-U(1)-O(4) ^{#2}	67.3(3)
O(3) ^{#3} -U(1)-O(4) ^{#2}	45.2(4)				
compound 2					
U(1)-O(1)	1.746(3)	U(1)-O(2)	2.440(3)	U(1)-O(3)	2.474(3)
U(1)-N(1) ^{#2}	2.699(3)				
O(1) ^{#1} -U(1)-O(1)	180.0	O(2)-U(1)-O(3)#1	127.44(10)	O(2)-U(1)-N(1)#3	115.57(11)
O(3)-U(1)-N(1) ^{#2}	115.42(10)	O(1)-U(1)-O(3)#1	94.10(14)	O(1)-U(1)-N(1)#3	95.26(14)
O(1)-U(1)-O(2)	93.22(14)	O(1)-U(1)-O(2) ^{#1}	86.78(14)	O(1)-U(1)-N(1)#2	84.74(14)
O(2)-U(1)-O(3)	52.56(10)	O(1)-U(1)-O(3)	85.90(14)	O(3)-U(1)-N(1)#3	64.58(10)
O(2)-U(1)-N(1) ^{#2}	64.43(11)				

Symmetry transformations used to generate equivalent atoms: for 1: #1= -x, -y+1, -z+1; #2= -x+1, -y+1, -z+1; #3= x-1, y, z; for 2:#1= -x+3, -y, -z; #2= -x+2, y-1/2, -z+1/2; #3= x+1, -y+1/2, z-1/2.