Supporting Information

9-Fluorenone and 9,10-Anthraquinone Potential Fused Aromatic Building Blocks to Synthesize Electron Acceptors for Organic Solar Cells

- 1. Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of 5-(bromomethyl)undecane (1).
- 2. Figure S2. ¹H NMR (400 MHz, CDCl₃) spectrum of 2,5-bis(2-butyloctyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione (**2**)
- 3. Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of 3-(5-bromothiophen-2-yl)-2,5-bis(2-butyloctyl)-6-(thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione (**3**).
- 4. Figure S4. ¹H NMR (400 MHz, CDCl₃) spectrum of 2,6-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)anthracene-9,10-dione (**5**).
- Figure S5. ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of 6,6'-(5,5'-(9-oxo-9*H*-fluorene-2,7-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-butyloctyl)-3-(thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione) (DPP-FN-DPP).
- Figure S6. ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of ,6'-(5,5'- (9,10-dioxo-9,10-dihydroanthracene-2,6-diyl)bis(thiophene-5,2-diyl))bis(2,5-bis(2-butyloctyl)-3-(thiophen-2-yl)pyrrolo[3,4-*c*]pyrrole-1,4(2*H*,5*H*)-dione) (DPP-ANQ-DPP).
- 7. Figure S7. Photo-electron spectra (PESA) of (a) **DPP-FN-DPP** and (b) **DPP-ANQ-DPP**.
- 8. Figure S8. UV-Vis spectra of DPP-FN-DPP and DPP-ANQ-DPP thin films as-cast and after thermal annealing at 120 °C for 5 min.
- 9. Figure S9. Normalized EQE spectra.
- 10. Figure S10. UV-Vis spectra of as-cast and annealed blends.
- 11. Figure S11. GIWAXS scattering patterns of as-cast and annealed neat films.
- 12. Table S1. Properties of the out-of-plane P3HT (100) peak in as-cast and annealed films.
- 13. Fig. S12. Resonant soft X-ray scattering profiles of as-cast and annealed P3HT:**DPP-FN-DPP** and P3HT:**DPP-ANQ-DPP** blends.
- 14. Fig. S13. Computed UV-VIS spectra of **DPP-FN-DPP** and **DPP-ANQ-DPP** in chloroform.

Figure S2. ¹H NMR (400 MHz, CDCl₃) spectrum of **2**

Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of **3**

Figure S4. ¹H NMR (400 MHz, CDCl₃) spectrum of **5**

Figure S5. ¹H (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of **DPP-FN-DPP**

Figure S6. ¹H (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of **DPP-ANQ-DPP**

Figure S7. Photo-electron spectra (PESA) of (a) **DPP-FN-DPP** and (b) **DPP-ANQ-DPP**.

Figure S8. UV-Vis spectra of DPP-FN-DPP and DPP-ANQ-DPP thin films as-cast and after thermal annealing at 120 °C for 5 min.

Figure S9. Normalized EQE spectra.

Figure S10. UV-Vis spectra of as-cast and annealed blends.

Figure S11. GIWAXS scattering patterns of as-cast and annealed neat films.

	d-spacing	Coherence length	Area
	(A)	(A)	(a.u.)
P3HT:DPP-FN-DPP as-cast	$\textbf{16.9}\pm\textbf{0.1}$	177 ± 4	1370 ± 30
P3HT:DPP-FN-DPP ann.	17.0 ± 0.1	182 ± 2	1400 ± 15
P3HT:DPP-ANQ-DPP as-cast	17.1 ± 0.1	94 ± 1	156 ± 2
P3HT:DPP-ANQ-DPP ann.	16.0 ± 0.1	154 ± 2	715 ± 10

Table S1. Properties of the out-of-plane P3HT (100) peak in as-cast and annealed films.

Fig. S12. Resonant soft X-ray scattering profiles of as-cast and annealed P3HT:**DPP-FN-DPP** and P3HT:**DPP-ANQ-DPP** blends. Resonant scattering traces (taken at 285.4 eV) are shown as solid lines while non-resonant scattering traces (taken at 260 eV) are shown as dashed lines.

Fig. S13. Computed UV-VIS spectra of **DPP-FN-DPP** and **DPP-ANQ-DPP** in chloroform. The excitations are predominantly HOMO-to-LUMO.