Electronic Supporting Information # Hexaphenylbenzene-Based Fluorescent Aggregates for Detection of Zinc and Pyrophosphate Ions in Aqueous Media: Tunable Self-assembly Behaviour and Construction of Logic Device Subhamay Pramanik, Vandana Bhalla,* and Manoj Kumar* Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar 143005, and Punjab, India vanmana@yahoo.co.in, mksharmaa@yahoo.co.in #### **CONTENTS:** | Table S1 | Comparison of probe 7 with literature reports for detection of Zn ²⁺ ions | |----------|--| | Table S2 | Comparison of $7\text{-}\mathbf{Z}\mathbf{n}^{2+}$ ensemble with literature reports for detection of PPi ions | | Fig. S1 | Fluorescence spectra of compound 7 (5 μ M) showing the variation of fluorescence intensity in Ethanol/glycerol mixture (0 to 60% volume fraction of glycerol in ethanol); $\lambda_{ex} = 350$ nm | | Fig. S2 | Fluorescence spectra of compound 7 with increasing concentration from 1 to 50 μ M; λ_{ex} = 350 nm | | Fig. S3 | Fluorescence spectra of derivative 7 (5 μ M) showing the variation of fluorescence intensity with increase in temperature from 25 to 75°C in H ₂ O/EtOH mixture (6:4, v/v); $\lambda_{ex} = 350$ nm | | Fig. S4 | Time-resolved fluorescence decay of compound 7 in EtOH and $H_2O/EtOH$ (6:4, v/v) mixture, Spectra measured at 450 nm. λ_{ex} = 377 nm | | Table S3 | Table showing the fluorescence lifetime of derivative 7 in EtOH and $H_2O/EtOH$ (6:4, v/v) mixture | | Fig. S5 | Fluorescence spectra of compound 7 in response to $ZnCl_2$ in (a) tap water, $\lambda_{ex} = 350$ nm; (b) in ground water, $\lambda_{ex} = 350$ nm | | Fig. S6 | Detection limit of compound 7 for Zn ²⁺ ions | - Fig. S7 Fluorescence spectra showing the quenching in emission intensity of 7-Zn-PPi system upon further addition of Zn^{2+} ions (10 equiv.), λ_{ex} = 350 nm. - **Fig. S8** Bars represent the emission intensity ratio (I_{370}/I_{450}) $(I_{450} = Initial fluorescence intensity at 450 nm; <math>I_{370} = Final fluorescence intensity at 370 nm after addition of anions). (a) Blue bars represent selectivity of 7 upon addition of different anions; (b) Red bars represent competitive selectivity of receptor 7 towards PPi ions (15 equiv.) in presence of other anions (30 equiv.)$ - Fig. S9 Detection limit of 7-Zn⁺² ensembles for PPi ions - Fig. S10 SEM images show the change in size of: (a) aggregates of derivative 7 in $H_2O/EtOH$ (6:4, v/v), (b) in presence of Zn^{2+} ions in aggregates of 7, (c) in addition of PPi to $7-Zn^{2+}$ ensemble - Fig. S11 DLS studies show the change in size of: (a) aggregates of derivative 7 in $H_2O/EtOH$ (6:4, v/v), (b) in presence of Zn^{2+} ions in aggregates of 7, (c) in addition of PPi to 7- Zn^{2+} ensemble - Fig. S12 ¹H NMR spectrum of compound 3 - Fig. S13 ¹³C NMR spectrum of compound 3 - Fig. S14 ESI-MS mass spectrum of compound 3 - Fig. S15 ¹H NMR spectrum of compound 5 - Fig. S16 ¹³C NMR spectrum of compound 5 - Fig. S17 ESI-MS mass spectrum of compound 5 - Fig. S18 ¹H NMR spectrum of compound 7 - Fig. S19 ¹³C NMR spectrum of compound 7 - Fig. S20 ESI-MS mass spectrum of compound 7 **Table S1** Comparison of probe **7** with literature reports for detection of Zn²⁺ ions. | S.N
o. | Publication | Sensing
Media | Fluoremet
ric
response | Colorime
tric
response | Zinc
induced
modulation
of Self-
assembly | Detection
limit | Practical applications for the constructio n Logic Device | Sensing ability of Zn ²⁺ ions in ground water (ZnCl ₂) | Interferen
ce with
other
Metal ions | |-----------|--|---|------------------------------|------------------------------|---|------------------------|---|---|--| | 1 | Present
Manuscript | 6:4
(H ₂ O:Et
OH, v/v) | Not
Quenched | Yes | Spherical to micro rods | 14.7 nM | Yes | Yes | No | | 2 | ACS Sens.,
2016, 1 , 739-
747 | DMF/
H ₂ O (9:1,
v/v) | Turn-on | Yes | Rod to
irregular
shaped | 110 nM | No | No | No | | 3 | ACS Sens.,
2016, 1 , 144-
150 | CH₃CN | Turn-on | No | No | - | No | No | Yes (Al ³⁺) | | 4 | Dalton Trans.,
2015, 44 ,
18902-18910 | CH ₃ OH/a
queous
HEPES
(9:1, v/v) | Turn-on | No | No | 1.03 μΜ | No | No | Yes (Cu ²⁺ ,
Al ³⁺) | | 5 | Dalton Trans.,
2015, 44 ,
7470-7476 | Tris-HCl
buffer | Turn-on | No | No | 2.5×10 ⁻⁵ M | No | No | Yes (Cd ²⁺) | | 6 | New J. Chem.,
2015, 39 ,
4055-4062 | HEPES/
CH ₃ OH
(3:7) | Turn-on | No | No | 76 nM | No | No | Yes (Cd ²⁺) | | 7 | RSC Adv., 2015, 5 , 63634-63640 | Ethanol | Turn-on | Yes | No | 1 nM | No | No | No | | 8 | Polyhedron,
2015, 94 , 75-
82 | 9:1 v/v
MeCN/
H ₂ O | Turn-on | No | No | 0.13 μΜ | No | No | Yes (Cd ²⁺) | | 9 | Dalton Trans.,
2014, 43 ,
1684-1690 | DMF-
H ₂ O (1 :
1) | Turn-on | No | No | μМ | No | No | Yes (Cd ²⁺) | | 10 | Dalton Trans.,
2014, 43 ,
10013-10022 | DMF-
H ₂ O (1:
1) | Turn-on | No | No | μМ | No | No | Yes (Cd ²⁺) | | 11 | Sens. Actuators, B, 2014, 201 , 204-212 | 4:1
MeOH–
water | Turn-on | No | No | 0.69 μΜ | No | - | Yes (Cu ²⁺ ,
Ni ²⁺ , Cd ²⁺) | | 12 | Chem.
Commun.,
2013, 49 ,
11430-11432 | HEPES
buffer | Turn-on | No | No | 57 nM | No | No | Yes (Pb ²⁺ ,
Cd ²⁺) | | 13 | Inorg. Chem.,
2012, 51 ,
8760-8774 | CH₃CN | Turn-on | No | No | 2.3 pM | No | No | Yes (Cd ²⁺) | | 15 | ACS Appl. Mater. Interfaces, 2011, 3 , 279- 286 | Tris-HCl
buffer | Turn-on | No | No
S3 | 0.1 μΜ | No | - | Yes (Pb ²⁺ , Cd ²⁺) | **Table S2** Comparison of **7-Zn²⁺** ensemble with literature reports for detection of PPi ions. | S.No | Publication | Sensing
Media | Fluoremetr
ic response | Colorimet
ric
response | Pyrophosphate
(PPi) induced Self-
assembly | Detection
limit | Practical applications for the construction Logic Device | |------|---|---|---------------------------|------------------------------|--|--|--| | 1 | Present
Manuscript | 6:4
(H ₂ O:EtO
H, v/v) | On-On | Yes | Micro rods | 74 nM | Yes | | 2 | Inorg. Chem.,
2016, 55 , 2212-
2219 | In MOPS
Buffer | Turn-on | Yes | No | 300 nM | No | | 3 | ACS Omega,
2016, 1 , 648-655 | aqueous
HEPES
buffer | Turn-on | No | No | 10 μΜ | No | | 4 | Sens. Actuators,
B, 2016, 233 ,
591-598 | HEPES
buffer | Turn-on | Yes | No | 0.11μΜ | No | | 5 | RSC Adv., 2015, 5, 60096-60100 | 0.5%
DMSO
water | Turn-on | Yes | Yes | 0.6 equiv. | No | | 6 | J. Mater. Chem.
B, 2014, 2 ,
6634-6638 | EtOH | ESIPT
Turn-on | No | No | - | No | | 7 | Dalton Trans.,
2014, 43 ,
14142-14146 | EtOH | Turn-on | No | No | 2.7 nM | No | | 8 | J. Mater. Chem.
B, 2014, 2 ,
3349-3354 | EtOH | ESIPT
Turn-on | No | No | 0.2 equiv. | No | | 9 | Spectrochim.
Acta, Part A,
2014, 118 , 17-23 | Tris–HCl
buffer pH | Turn-on | No | No | 2.78 μΜ | No | | 10 | Anal. Chem.,
2012, 84 , 5117-
5123 | aqueous
buffer
solution | Turn-off | No | No | 2.78 μΜ | No | | 11 | Org. Biomol.
Chem., 2012, 10 ,
5606-5612 | aqueous
HEPES
buffer | Turn-on | Yes | No | $(2.9 \pm 0.3) \times 10^{8} \mathrm{M}$ | No | | 12 | Org. Lett., 2011, 13, 1362-1365 | aqueous
HEPES
buffer | Turn-on | No | No | 1 μΜ | No | Fig. S1 Fluorescence spectra of compound 7 (5 μ M) showing the variation of fluorescence intensity in Ethanol/glycerol mixture (0 to 60% volume fraction of glycerol in ethanol); $\lambda_{ex} = 350$ nm. Fig. S2 Fluorescence spectra of derivative 7 in ethanol with increasing concentration from 1 to 50 μ M; $\lambda_{ex} = 350$ nm. Inset showing the non-linear emission enhancement with increasing concentration. Fig. S3 Fluorescence spectra of derivative 7 (5 μ M) showing the variation of fluorescence intensity with increase in temperature from 25 to 75 °C in H₂O/EtOH mixture (6:4, v/v); $\lambda_{ex} = 350$ nm. Fig. S4 Exponential fluorescence decays of derivative 7 in EtOH and $H_2O/EtOH$ (6:4, v/v) mixture, Spectra measured at 450 nm. λ_{ex} = 377 nm. Table S3 Fluorescence lifetime of derivative 7 in EtOH and H₂O/EtOH (6:4, v/v) mixtures. | Derivative (7) | A_1/A_2 | τ _I (ns) | τ ₂ (ns) | τ _{avg} (ns) | Φ_{f} | $\frac{k_f}{(10^9 \text{ S}^{-1})}$ | k_{nr} (10 ⁹ S ⁻¹) | |--------------------------------------|-------------|---------------------|---------------------|-----------------------|---------------------|-------------------------------------|---| | EtOH | 100 | 0.638 | - | 0.638 | 0.082 | 0.128 | 1.438 | | (6:4, v/v),
H ₂ O/EtOH | 74.66/25.34 | 1.193 | 1.048 | 1.122 | 0.14 | 0.124 | 0.766 | A₁, A₂: fractional amount of molecules in each environment, τ_I and τ_2 : biexponential life time of aggregates in 60 vol% of water in EtOH; k_f : radiative rate constant ($k_f = \Phi_f/\tau_{avg}$); k_{nr} : non-radiative rate constant ($k_{nr} = (1 - \Phi_f)/\tau_{avg}$); $\lambda_{ex} = 377$ nm. **Fig. S5** Fluorescence spectra of compound 7 in $H_2O/EtOH$ (6:4, v/v) response to $ZnCl_2$ in (a) tap water (15 equiv.) and (b) local ground water (18 equiv.), λ_{ex} = 350 nm. **Fig. S6** (a) Showing the fluorescence intensity of compound 7 and (b) Calibrated curve showing the fluorescence intensity of compound 7 at 450 nm as a function of Zn^{2+} ions concentration (equiv.) in H₂O/EtOH (6:4, v/v) buffered with HEPES, pH = 7.05, λ_{ex} = 350 nm. The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor 7 without Zn²⁺ was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation: $$DL = 3 \times SD/S$$ Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve. ## From the graph we get slope S = 1019333, and SD value is 0.005 Thus using the formula we get the Detection Limit (DL) = $3 \times 0.005/1019333 = 1.47 \times 10^{-8}M$ = 14.7 nM. **Fig. S7** Fluorescence spectra showing the quenching in emission intensity of **7-Zn-PPi** system upon further addition of Zn^{2+} ions (10 equiv.), λ_{ex} = 350 nm. **Fig. S8** Bars represent the emission intensity ratio (I_{370}/I_{450}) $(I_{450} = Initial fluorescence intensity at 450 nm; <math>I_{370} = Final$ fluorescence intensity at 370 nm after addition of anions). (a) Blue bars represent selectivity of 7 upon addition of different anions; (b) Red bars represent competitive selectivity of receptor 7 towards PPi ions (15 equiv.) in presence of other anions (30 equiv.). **Fig. S9** (a) Showing the fluorescence intensity of $7\text{-}\mathbf{Z}\mathbf{n}^{+2}$ ensemble and (b) Calibrated curve showing the fluorescence intensity of $7\text{-}\mathbf{Z}\mathbf{n}^{+2}$ ensemble at 450 nm as a function of PPi ions concentration (equiv.) in H₂O/EtOH (6:4, v/v) buffered with HEPES, pH = 7.05, λ_{ex} = 350 nm. The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor 7 without Zn²⁺ was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation: $$DL = 3 \times SD/S$$ Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve. ## From the graph we get slope S = 242344, and SD value is 0.006 Thus using the formula we get the Detection Limit (DL) = $3 \times 0.006/242344 = 74 \times 10^{-9} M = 74 \text{ nM}$. Fig. S10 SEM images show the change in morphology and size of: (a) aggregates of derivative 7 in $H_2O/EtOH$ (6:4, v/v), (b) in presence of Zn^{2+} ions in aggregates of 7, (c) in addition of PPi to $7-Zn^{2+}$ ensemble. **Fig. S11** DLS studies show the change in size of: (a) aggregates of derivative 7 in $H_2O/EtOH$ (6:4, v/v), (b) in presence of Zn^{2+} ions in aggregates of 7, (c) in addition of PPi to 7- Zn^{2+} ensemble. Fig. S12 ¹H NMR spectrum of compound 3 in CDCl₃. Fig. S13 ¹³C NMR spectrum of compound 3 in CDCl₃. Fig. S14 ESI-MS mass spectrum of compound 3. Fig. S15 ¹H NMR spectrum of compound 5 in CDCl₃. Fig. S16 ¹³C NMR spectrum of compound 5 in CDCl₃. Fig. S17 ESI-MS mass spectrum of compound 5. Fig. S18 ¹H NMR spectrum of compound 7 in DMSO-d₆. Fig. S19 ¹³C NMR spectrum of compound 7 in CDCl₃. Fig. S20 ESI-MS mass spectrum of compound 7.