Electronic Supporting Information

Hexaphenylbenzene-Based Fluorescent Aggregates for Detection of Zinc and Pyrophosphate Ions in Aqueous Media: Tunable Self-assembly Behaviour and Construction of Logic Device

Subhamay Pramanik, Vandana Bhalla,* and Manoj Kumar*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II Guru Nanak Dev University, Amritsar 143005, and Punjab, India vanmana@yahoo.co.in, mksharmaa@yahoo.co.in

CONTENTS:

Table S1	Comparison of probe 7 with literature reports for detection of Zn ²⁺ ions
Table S2	Comparison of $7\text{-}\mathbf{Z}\mathbf{n}^{2+}$ ensemble with literature reports for detection of PPi ions
Fig. S1	Fluorescence spectra of compound 7 (5 μ M) showing the variation of fluorescence intensity in Ethanol/glycerol mixture (0 to 60% volume fraction of glycerol in ethanol); $\lambda_{ex} = 350$ nm
Fig. S2	Fluorescence spectra of compound 7 with increasing concentration from 1 to 50 μ M; λ_{ex} = 350 nm
Fig. S3	Fluorescence spectra of derivative 7 (5 μ M) showing the variation of fluorescence intensity with increase in temperature from 25 to 75°C in H ₂ O/EtOH mixture (6:4, v/v); $\lambda_{ex} = 350$ nm
Fig. S4	Time-resolved fluorescence decay of compound 7 in EtOH and $H_2O/EtOH$ (6:4, v/v) mixture, Spectra measured at 450 nm. λ_{ex} = 377 nm
Table S3	Table showing the fluorescence lifetime of derivative 7 in EtOH and $H_2O/EtOH$ (6:4, v/v) mixture
Fig. S5	Fluorescence spectra of compound 7 in response to $ZnCl_2$ in (a) tap water, $\lambda_{ex} = 350$ nm; (b) in ground water, $\lambda_{ex} = 350$ nm
Fig. S6	Detection limit of compound 7 for Zn ²⁺ ions

- Fig. S7 Fluorescence spectra showing the quenching in emission intensity of 7-Zn-PPi system upon further addition of Zn^{2+} ions (10 equiv.), λ_{ex} = 350 nm.
- **Fig. S8** Bars represent the emission intensity ratio (I_{370}/I_{450}) $(I_{450} = Initial fluorescence intensity at 450 nm; <math>I_{370} = Final fluorescence intensity at 370 nm after addition of anions). (a) Blue bars represent selectivity of 7 upon addition of different anions; (b) Red bars represent competitive selectivity of receptor 7 towards PPi ions (15 equiv.) in presence of other anions (30 equiv.)$
- Fig. S9 Detection limit of 7-Zn⁺² ensembles for PPi ions
- Fig. S10 SEM images show the change in size of: (a) aggregates of derivative 7 in $H_2O/EtOH$ (6:4, v/v), (b) in presence of Zn^{2+} ions in aggregates of 7, (c) in addition of PPi to $7-Zn^{2+}$ ensemble
- Fig. S11 DLS studies show the change in size of: (a) aggregates of derivative 7 in $H_2O/EtOH$ (6:4, v/v), (b) in presence of Zn^{2+} ions in aggregates of 7, (c) in addition of PPi to 7- Zn^{2+} ensemble
- Fig. S12 ¹H NMR spectrum of compound 3
- Fig. S13 ¹³C NMR spectrum of compound 3
- Fig. S14 ESI-MS mass spectrum of compound 3
- Fig. S15 ¹H NMR spectrum of compound 5
- Fig. S16 ¹³C NMR spectrum of compound 5
- Fig. S17 ESI-MS mass spectrum of compound 5
- Fig. S18 ¹H NMR spectrum of compound 7
- Fig. S19 ¹³C NMR spectrum of compound 7
- Fig. S20 ESI-MS mass spectrum of compound 7

Table S1 Comparison of probe **7** with literature reports for detection of Zn²⁺ ions.

S.N o.	Publication	Sensing Media	Fluoremet ric response	Colorime tric response	Zinc induced modulation of Self- assembly	Detection limit	Practical applications for the constructio n Logic Device	Sensing ability of Zn ²⁺ ions in ground water (ZnCl ₂)	Interferen ce with other Metal ions
1	Present Manuscript	6:4 (H ₂ O:Et OH, v/v)	Not Quenched	Yes	Spherical to micro rods	14.7 nM	Yes	Yes	No
2	ACS Sens., 2016, 1 , 739- 747	DMF/ H ₂ O (9:1, v/v)	Turn-on	Yes	Rod to irregular shaped	110 nM	No	No	No
3	ACS Sens., 2016, 1 , 144- 150	CH₃CN	Turn-on	No	No	-	No	No	Yes (Al ³⁺)
4	Dalton Trans., 2015, 44 , 18902-18910	CH ₃ OH/a queous HEPES (9:1, v/v)	Turn-on	No	No	1.03 μΜ	No	No	Yes (Cu ²⁺ , Al ³⁺)
5	Dalton Trans., 2015, 44 , 7470-7476	Tris-HCl buffer	Turn-on	No	No	2.5×10 ⁻⁵ M	No	No	Yes (Cd ²⁺)
6	New J. Chem., 2015, 39 , 4055-4062	HEPES/ CH ₃ OH (3:7)	Turn-on	No	No	76 nM	No	No	Yes (Cd ²⁺)
7	RSC Adv., 2015, 5 , 63634-63640	Ethanol	Turn-on	Yes	No	1 nM	No	No	No
8	Polyhedron, 2015, 94 , 75- 82	9:1 v/v MeCN/ H ₂ O	Turn-on	No	No	0.13 μΜ	No	No	Yes (Cd ²⁺)
9	Dalton Trans., 2014, 43 , 1684-1690	DMF- H ₂ O (1 : 1)	Turn-on	No	No	μМ	No	No	Yes (Cd ²⁺)
10	Dalton Trans., 2014, 43 , 10013-10022	DMF- H ₂ O (1: 1)	Turn-on	No	No	μМ	No	No	Yes (Cd ²⁺)
11	Sens. Actuators, B, 2014, 201 , 204-212	4:1 MeOH– water	Turn-on	No	No	0.69 μΜ	No	-	Yes (Cu ²⁺ , Ni ²⁺ , Cd ²⁺)
12	Chem. Commun., 2013, 49 , 11430-11432	HEPES buffer	Turn-on	No	No	57 nM	No	No	Yes (Pb ²⁺ , Cd ²⁺)
13	Inorg. Chem., 2012, 51 , 8760-8774	CH₃CN	Turn-on	No	No	2.3 pM	No	No	Yes (Cd ²⁺)
15	ACS Appl. Mater. Interfaces, 2011, 3 , 279- 286	Tris-HCl buffer	Turn-on	No	No S3	0.1 μΜ	No	-	Yes (Pb ²⁺ , Cd ²⁺)

Table S2 Comparison of **7-Zn²⁺** ensemble with literature reports for detection of PPi ions.

S.No	Publication	Sensing Media	Fluoremetr ic response	Colorimet ric response	Pyrophosphate (PPi) induced Self- assembly	Detection limit	Practical applications for the construction Logic Device
1	Present Manuscript	6:4 (H ₂ O:EtO H, v/v)	On-On	Yes	Micro rods	74 nM	Yes
2	Inorg. Chem., 2016, 55 , 2212- 2219	In MOPS Buffer	Turn-on	Yes	No	300 nM	No
3	ACS Omega, 2016, 1 , 648-655	aqueous HEPES buffer	Turn-on	No	No	10 μΜ	No
4	Sens. Actuators, B, 2016, 233 , 591-598	HEPES buffer	Turn-on	Yes	No	0.11μΜ	No
5	RSC Adv., 2015, 5, 60096-60100	0.5% DMSO water	Turn-on	Yes	Yes	0.6 equiv.	No
6	J. Mater. Chem. B, 2014, 2 , 6634-6638	EtOH	ESIPT Turn-on	No	No	-	No
7	Dalton Trans., 2014, 43 , 14142-14146	EtOH	Turn-on	No	No	2.7 nM	No
8	J. Mater. Chem. B, 2014, 2 , 3349-3354	EtOH	ESIPT Turn-on	No	No	0.2 equiv.	No
9	Spectrochim. Acta, Part A, 2014, 118 , 17-23	Tris–HCl buffer pH	Turn-on	No	No	2.78 μΜ	No
10	Anal. Chem., 2012, 84 , 5117- 5123	aqueous buffer solution	Turn-off	No	No	2.78 μΜ	No
11	Org. Biomol. Chem., 2012, 10 , 5606-5612	aqueous HEPES buffer	Turn-on	Yes	No	$(2.9 \pm 0.3) \times 10^{8} \mathrm{M}$	No
12	Org. Lett., 2011, 13, 1362-1365	aqueous HEPES buffer	Turn-on	No	No	1 μΜ	No

Fig. S1 Fluorescence spectra of compound 7 (5 μ M) showing the variation of fluorescence intensity in Ethanol/glycerol mixture (0 to 60% volume fraction of glycerol in ethanol); $\lambda_{ex} = 350$ nm.

Fig. S2 Fluorescence spectra of derivative 7 in ethanol with increasing concentration from 1 to 50 μ M; $\lambda_{ex} = 350$ nm. Inset showing the non-linear emission enhancement with increasing concentration.

Fig. S3 Fluorescence spectra of derivative 7 (5 μ M) showing the variation of fluorescence intensity with increase in temperature from 25 to 75 °C in H₂O/EtOH mixture (6:4, v/v); $\lambda_{ex} = 350$ nm.

Fig. S4 Exponential fluorescence decays of derivative 7 in EtOH and $H_2O/EtOH$ (6:4, v/v) mixture, Spectra measured at 450 nm. λ_{ex} = 377 nm.

Table S3 Fluorescence lifetime of derivative 7 in EtOH and H₂O/EtOH (6:4, v/v) mixtures.

Derivative (7)	A_1/A_2	τ _I (ns)	τ ₂ (ns)	τ _{avg} (ns)	Φ_{f}	$\frac{k_f}{(10^9 \text{ S}^{-1})}$	k_{nr} (10 ⁹ S ⁻¹)
EtOH	100	0.638	-	0.638	0.082	0.128	1.438
(6:4, v/v), H ₂ O/EtOH	74.66/25.34	1.193	1.048	1.122	0.14	0.124	0.766

A₁, A₂: fractional amount of molecules in each environment, τ_I and τ_2 : biexponential life time of aggregates in 60 vol% of water in EtOH; k_f : radiative rate constant ($k_f = \Phi_f/\tau_{avg}$); k_{nr} : non-radiative rate constant ($k_{nr} = (1 - \Phi_f)/\tau_{avg}$); $\lambda_{ex} = 377$ nm.

Fig. S5 Fluorescence spectra of compound 7 in $H_2O/EtOH$ (6:4, v/v) response to $ZnCl_2$ in (a) tap water (15 equiv.) and (b) local ground water (18 equiv.), λ_{ex} = 350 nm.

Fig. S6 (a) Showing the fluorescence intensity of compound 7 and (b) Calibrated curve showing the fluorescence intensity of compound 7 at 450 nm as a function of Zn^{2+} ions concentration (equiv.) in H₂O/EtOH (6:4, v/v) buffered with HEPES, pH = 7.05, λ_{ex} = 350 nm.

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor 7 without Zn²⁺ was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

$$DL = 3 \times SD/S$$

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope

S = 1019333, and SD value is 0.005

Thus using the formula we get the Detection Limit (DL) = $3 \times 0.005/1019333 = 1.47 \times 10^{-8}M$ = 14.7 nM.

Fig. S7 Fluorescence spectra showing the quenching in emission intensity of **7-Zn-PPi** system upon further addition of Zn^{2+} ions (10 equiv.), λ_{ex} = 350 nm.

Fig. S8 Bars represent the emission intensity ratio (I_{370}/I_{450}) $(I_{450} = Initial fluorescence intensity at 450 nm; <math>I_{370} = Final$ fluorescence intensity at 370 nm after addition of anions). (a) Blue bars represent selectivity of 7 upon addition of different anions; (b) Red bars represent competitive selectivity of receptor 7 towards PPi ions (15 equiv.) in presence of other anions (30 equiv.).

Fig. S9 (a) Showing the fluorescence intensity of $7\text{-}\mathbf{Z}\mathbf{n}^{+2}$ ensemble and (b) Calibrated curve showing the fluorescence intensity of $7\text{-}\mathbf{Z}\mathbf{n}^{+2}$ ensemble at 450 nm as a function of PPi ions concentration (equiv.) in H₂O/EtOH (6:4, v/v) buffered with HEPES, pH = 7.05, λ_{ex} = 350 nm.

The detection limit was calculated based on the fluorescence titration. To determine the S/N ratio, the emission intensity of receptor 7 without Zn²⁺ was measured by 10 times and the standard deviation of blank measurements was determined. The detection limit is then calculated with the following equation:

$$DL = 3 \times SD/S$$

Where SD is the standard deviation of the blank solution measured by 10 times; S is the slope of the calibration curve.

From the graph we get slope

S = 242344, and SD value is 0.006

Thus using the formula we get the Detection Limit (DL) = $3 \times 0.006/242344 = 74 \times 10^{-9} M = 74 \text{ nM}$.

Fig. S10 SEM images show the change in morphology and size of: (a) aggregates of derivative 7 in $H_2O/EtOH$ (6:4, v/v), (b) in presence of Zn^{2+} ions in aggregates of 7, (c) in addition of PPi to $7-Zn^{2+}$ ensemble.

Fig. S11 DLS studies show the change in size of: (a) aggregates of derivative 7 in $H_2O/EtOH$ (6:4, v/v), (b) in presence of Zn^{2+} ions in aggregates of 7, (c) in addition of PPi to 7- Zn^{2+} ensemble.

Fig. S12 ¹H NMR spectrum of compound 3 in CDCl₃.

Fig. S13 ¹³C NMR spectrum of compound 3 in CDCl₃.

Fig. S14 ESI-MS mass spectrum of compound 3.

Fig. S15 ¹H NMR spectrum of compound 5 in CDCl₃.

Fig. S16 ¹³C NMR spectrum of compound 5 in CDCl₃.

Fig. S17 ESI-MS mass spectrum of compound 5.

Fig. S18 ¹H NMR spectrum of compound 7 in DMSO-d₆.

Fig. S19 ¹³C NMR spectrum of compound 7 in CDCl₃.

Fig. S20 ESI-MS mass spectrum of compound 7.