Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

A Synthetic Route Towards 3, 4-disubstituted Pyrrolidin-2-ones via Michael Addition and

Reductive Ring Closing Strategy

Monali Dawange^a, Nikita Parekh^a, Avinash Kumbhar^a, Wim Dehaen^b and Radhika Kusurkar^a*

(a) Department of Chemistry, S P Pune University, Pune, 411007, India

rsk@chem.unipune.ac.in

(b) Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001

Leuven, Belgium

Table of contents	
General Procedure and characterisation data	S2-13
X-ray crystal structure of 4a	S14-S21
X-ray crystal structure of 4l	S22-S27
References	S28
¹ H and ¹³ C NMR spectra of compounds	S29-S60

EXPERIMENTAL SECTION

General remarks

Chemicals and solvents received from commercial sources were used without further purification. ¹H NMR spectra and ¹³C NMR spectra were recorded on Bruker (500 MHz and 400 MHz) spectrometer. Coupling constants (*J*) are reported in hertz (Hz), and chemical shifts are reported in parts per million (δ). Melting points were determined using a Thomas Hoover capillary melting point apparatus and uncorrected. Column chromatography was performed using silica gel (100-200 mesh). Exact mass measurements were performed on Bruker impact HD Q-TOF analyser in the ESI mode. IR spectra were recorded by a Shimadzu FT-IR 8400 Spectrometer. The routine monitoring of reactions were performed using TLC (Merck kieselgel 60 0.20 mm layer, UV254). In case of all Michael adducts, exchangeable protons were not observed in ¹H NMR in CDCl₃.

Synthetic Procedures and Characterization Data

Syntheses of **1** and **2**: The nitroalkenes¹ (**1a-j**) and isoxazolone derivatives² (**2a**, **b**, **c**) were prepared according to literature methods from the corresponding β -keto esters.

General Procedure for the Synthesis of Michael Adducts (3a-o)

Nitroalkene 1 (1.24 mmol), isoxazolone 2 (1.24 mmol), and DABCO (1.24 mmol) were stirred in dry DCM (10 mL) under N_2 at room temperature. The progress of the reaction was monitored by TLC. When the reaction was complete, DCM was evaporated off. The crude sample was purified by column chromatography on silica gel (with petroleum ether/EtOAc or CHCl₃/MeOH as the eluent) to afford the corresponding Michael adduct **3**.

4-(2-Nitro-1-phenylethyl)-3-phenyl-1,2-oxazol-5-ol (3a)

[(*E*)-2-nitroethenyl]benzene (**1a**) (185 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 30 mins. The product was obtained as a brown semisolid (343 mg, 89% yield). R_f 0.56 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.41-7.36 (m, 7H), 7.31-7.28 (m, 2H), 7.23-7.21(m, 1H), 5.49 (dd, *J* = 11.9, 10.4 Hz, 1H), 4.72 (dd, *J* = 12.1, 6.1 Hz, 1H), 4.49 (dd, *J* = 10.2, 6.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃ with DABCO) δ 176.6, 165.2, 141.3, 132.2, 131.5, 128.8, 128.5, 128.2, 127.9, 127.1, 82.6, 78.0, 39.6; ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.50-7.48 (m, 3H), 7.42-7.38 (m, 4H), 7.32-7.28 (m, 2H), 7.24-7.20 (m, 1H), 6.52 (br s, 1H), 5.33 (dd, J = 12.8, 8.8 Hz, 1H), 5.11 (dd, J = 12.8, 7.3 Hz, 1H), 4.38 (t, J = 8.1 Hz, 1H); ¹³C NMR (100 MHz, DMSO- d_6) δ 171.1, 162.4, 139.0, 131.3, 129.4, 129.0, 127.7, 127.5, 127.4, 126.9, 126.7, 76.3, 38.0; FT-IR (neat) 3064, 2934, 1732, 1556, 1377, 756, 698 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 311.1022, calcd for C₁₇H₁₅N₂O₄ 311.1026.

4-[1-(4-Methoxyphenyl)-2-nitroethyl]-3-phenyl-1,2-oxazol-5-ol (3b)

1-Methoxy-4-[(*E*)-2-nitroethenyl]benzene (**1b**) (222 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 4 h. The product was obtained as a brown semisolid (359 mg, 85% yield). R_f 0.54 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.38-7.34 (m, 7H), 6.83 (d, *J* = 8.7 Hz, 2H), 5.44 (dd, *J* = 11.9, 10.3 Hz, 1H), 4.70 (dd, *J* = 11.9, 6.3 Hz, 1H), 4.44 (dd, *J* = 10.2, 6.3 Hz, 1H), 3.78 (s, 1H); ¹³C NMR (100 MHz, CDCl₃ with DABCO) δ 176.7, 165.2, 158.6, 133.5, 131.7, 129.0, 128.7, 128.4, 128.1, 114.1, 82.3, 78.2, 55.2, 38.8; FT-IR (neat) 2933, 1721, 1603, 1556, 1514, 1378, 1253, 1174, 1030, 834 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 341.1135, calcd for C₁₈H₁₇N₂O₅ 341.1132.

4-[2-Nitro-1-(thiophen-2-yl)ethyl]-3-phenyl-1,2-oxazol-5-ol (3c)

2-[(*E*)-2-nitroethenyl]thiophene (**1c**) (193mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 1 h. The product was obtained as a dark brown semisolid (342 mg, 87% yield). R_f 0.41 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.46 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.39-7.37 (m, 3H), 7.16 (dd, *J* = 5.0, 1.3 Hz, 1H), 6.94-6.92 (m, 2H), 5.41 (dd, *J* = 11.5, 9.5 Hz, 1H), 4.86-4.77 (m, 2H); ¹³C NMR (125 MHz, CDCl₃ with DABCO) δ 176.3, 164.9, 144.8, 131.4, 128.8, 128.4, 128, 127.1, 124.8, 124.5, 82.6, 77.8, 34.6; FT-IR (neat) 3066, 2923, 1711, 1553, 1426, 1376, 757, 699 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 317.0593, calcd for C₁₅H₁₃N₂O₄S 317.0591.

4-(1-Nitropentan-2-yl)-3-phenyl-1,2-oxazol-5-ol (3d)

(1*E*)-1-nitropent-1-ene (**1d**) (143 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 24 h. The product was obtained as brown semisolid (182 mg, 53% yield). R_f 0.43 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.51-7.49 (m, 2H), 7.44-7.39 (m, 3H), 4.98 (dd, J = 11.3, 9.8 Hz, 1H), 4.47 (dd, J = 11.4, 6.2 Hz, 1H), 3.31-3.25 (m, 1H), 1.69-1.63 (m, 1H), 1.40-1.36 (m, 1H), 1.30-1.25 (m, 1H), 1.14-1.12 (m, 1H), 0.75 (t, J = 7.3 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃ with DABCO) δ 176.1, 165. 8, 132.2, 129.5, 128.7, 128.5, 128.4, 78.4, 33.6, 33.6, 20.4, 13.9; FT-IR (neat) 3065, 2961, 1697,1549, 1379, 758, 696 cm⁻¹; HRMS (ESI) [M + H]⁺ found m/z 277.1184, calcd for C₁₄H₁₇N₂O₄ 277.1183.

4-(2-Nitro-1-phenylpropyl)-3-phenyl-1,2-oxazol-5-ol (3e)

[(1*E*)-2-nitroprop-1-en-1-yl]benzene (**1e**) (202 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 3 h. The product was obtained as orange solid (322 mg, 80% yield). R_f 0.47 (pet ether/EtOAc = 50/50); mp 84-86 °C; ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.36-7.34 (m, 3H), 7.32-7.26 (m, 4H), 7.22-7.19 (m, 2H), 7.17-7.16 (m, 1H), 5.86 (dd, *J* = 11.2, 6.6 Hz, 1H), 3.94 (d, *J* = 11.2 Hz, 1H), 1.21 (d, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃ with DABCO) δ 173.0, 164.1, 139.5, 130.6, 129.2, 129.0, 128.4, 128.2, 94.5, 83.8, 45.7, 19.0; FT-IR (neat) 3064, 2937, 1687,1549, 1414, 1388, 1359, 756, 699 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 325.1179, calcd for C₁₈H₁₇N₂O₄ 325.1183.

Methyl 4-[1-(5-hydroxy-3-phenyl-1,2-oxazol-4-yl)-2-nitroethyl]benzoate (3f)

Methyl 4-[(*E*)-2-nitroethenyl]benzoate (**1f**) (257 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 3 h. The product was obtained as dark brown semisolid (352 mg, 77% yield). R_f 0.43 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.96 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 7.37-7.34 (m, 5H), 5.46 (dd, *J* = 12.2, 9.9 Hz, 1H), 4.77 (dd, *J* = 12.2, 6.5 Hz, 1H), 4.53 (dd, *J* = 9.9, 6.5 Hz, 1H), 3.90 (s, 3H); ¹³C NMR (125 MHz, CDCl₃ with DABCO) δ 175.6, 166.8, 164.7, 146.0, 130.2, 129.4, 129.2, 128.7, 128.1, 127.9, 84.4, 52.2, 39.4, 29.7; FT-IR (neat) 3060, 2953, 1719,1556,1377, 1279, 1111, 759, 700 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m*/*z* 369.1081, calcd for C₁₉H₁₇N₂O₆ 369.1081.

4-[1-(1,3-Benzodioxol-5-yl)-2-nitroethyl]-3-phenyl-1,2-oxazol-5-ol (3g)

5-[(*E*)-2-nitroethenyl]-1,3-benzodioxole (**1g**) (240 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 4 h. The product was obtained as brown semisolid (360 mg, 82% yield); R_f 0.41 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.38-7.36 (m, 5H), 7.04 (s, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 5.91 (dd, *J* = 3.5, 1.3 Hz, 2H), 5.38 (dd, *J* = 12.0, 9.9 Hz, 1H), 4.73 (dd, *J* = 12.0, 6.6 Hz, 1H), 4.38 (dd, *J* = 9.8, 6.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃ with DABCO) δ 176.5, 165.2, 147.9, 146.6, 135.4, 131.5, 128.9, 128.5, 128.2, 121.1, 108.5, 108.4, 101, 82.9, 78.3, 39.4; FT-IR (neat) 2926, 1724, 1557, 1490, 1377, 1256, 1039, 969, 754, 699 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 355.0928, calcd for C₁₈H₁₅N₂O₆ 355.0925.

4-[1-(4-Chlorophenyl)-2-nitroethyl]-3-phenyl-1,2-oxazol-5-ol (3h)

1-Chloro-4-[(*E*)-2-nitroethenyl]benzene (**1h**) (227 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 4 h. The product was obtained as orange semisolid (266 mg, 62% yield); R_f 0.38 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.38-7.35 (m, 7H), 7.27-7.25 (m, 2H), 5.41 (dd, *J* = 12.1, 10.0 Hz, 1H), 4.73 (dd, *J* = 12.1, 6.5 Hz, 1H), 4.44 (dd, *J* = 9.9, 6.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃ with DABCO) δ 175.4, 164.6, 139.3, 133.2, 130.0, 129.6, 129.3, 129.1, 128.8, 128.1, 85.7, 85.4, 38.9; FT-IR (neat) 2926, 1714,1553, 1492, 1377, 754, 699 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 345.0636, calcd for C₁₇H₁₄ClN₂O₄ 345.0637.

4-(1-Cyclohexyl-2-nitroethyl)-3-phenyl-1,2-oxazol-5-ol (3i)

[(*E*)-2-nitroethenyl]cyclohexane (**1i**) (192 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (138 mg, 1.24 mmol) were stirred in DCM (10 mL) for 24 h. The product was obtained as brown semisolid (177 mg, 45% yield); R_f 0.4 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ without DABCO) δ 7.56-7.52 (m, 5H), 5.09 (dd, *J* = 14.1, 9.0 Hz, 1H), 4.65 (dd, *J* = 12.1, 4.3 Hz, 1H), 3.18 (ddd, *J* = 11.0, 9.3, 4.4 Hz, 1H), 1.80-1.78 (m, 1H), 1.71-1.59 (m, 5H), 1.22-1.14 (m, 2H), 1.06-1.03 (m, 1H), 0.93-0.9 (m, 1H), 0.76-0.69 (m, 1H); ¹³C NMR (125 MHz, CDCl₃ without DABCO) δ 171.6, 165.2, 131.6, 129.5, 128.1,

126.7, 99.9, 75.5, 39.4, 38.3, 31.33, 31.1, 26, 25.9, 1.1; FT-IR (neat) 3065, 2928, 2853, 1686, 1550, 1379, 758, 698 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 317.1499, calcd for C₁₇H₂₁N₂O₄ 317.1496.

4-[1-(Naphthalen-2-yl)-2-nitroethyl]-3-phenyl-1,2-oxazol-5-ol (3j)

2-[(*E*)-2-nitroethenyl]naphthalene (**1j**) (247 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (124 mg, 0.62 mmol) were stirred in DCM (10 mL) for 12 h. The product was obtained as brown semisolid (264 mg, 59% yield); R_f 0.44 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.79-7.77 (m, 4H), 7.58 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.45-7.43 (m, 2H), 7.39-7.37 (m, 2H), 7.34-7.33 (m, 3H), 5.57 (dd, *J* = 12.1, 10.2 Hz, 1H), 4.82 (dd, *J* = 12.1, 6.1 Hz, 1H), 4.66 (dd, *J* = 10.2, 6.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃ with DABCO) δ 176.9, 165.6, 138.7, 133.6, 132.6, 131.7, 128.8, 128.6, 128.4, 128.3, 128.0, 127.6, 126.5, 126.3, 126.1, 125.8, 82.0, 78.0, 39.8. FT-IR (neat) 3051, 2925, 1719, 1555, 1376, 753, 479 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 361.1184, calcd for C₂₁H₁₇N₂O₄ 361.1183.

3-Methyl-4-(2-nitro-1-phenylethyl)-1,2-oxazol-5-ol (3k)

[(*E*)-2-nitroethenyl]benzene (**1a**), (185 mg, 1.24 mmol), 3-methylisoxazol-5(4*H*)-one (**2b**) (123 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 3 h. The product was obtained as a yellow semisolid (237 mg, 77% yield). R_f 0.37 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ without DABCO) δ 7.41-7.39 (m, 2H), 7.37-7.32 (m, 2H), 7.30-7.29 (m, 1H), 5.37 (dd, *J* = 13.3, 9.4 Hz, 1H), 4.88 (dd, *J* = 13.3, 6.3 Hz, 1H), 4.47 (dd, *J* = 9.4, 6.3 Hz, 1H), 2.18 (s, 3H); ¹³C NMR (125 MHz, CDCl₃ without DABCO) δ 171.6, 162.2, 137.8, 129.2, 128.0, 127.5, 99.3, 76.1, 38.8, 10.8; FT-IR (neat) 3062, 2927, 1719, 1554, 1455, 1377, 1261, 754, 701 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 249.0869, calcd for C₁₂H₁₃N₂O₄ 249.0870.

4-[1-(4-Methoxyphenyl)-2-nitroethyl]-3-methyl-1,2-oxazol-5-ol (31)

1-Methoxy-4-[(*E*)-2-nitroethenyl]benzene (**1b**) (222 mg, 1.24 mmol), 3-methylisoxazol-5(4*H*)-one (**2b**) (123 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 3 h. The product was obtained as a yellow semisolid (252 mg, 73% yield). R_f 0.50 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ without DABCO) δ 7.29 (d, *J* = 8.7 Hz, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 5.27 (dd, *J* = 13.1, 9.3 Hz, 1H),

4.83 (dd, J = 13.1, 6.7 Hz, 1H), 4.40 (dd, J = 9.2, 6.7 Hz, 1H), 3.77 (s, 3H), 2.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃ without DABCO) δ 172.2, 161.9, 159.4, 130.2, 128.7, 114.7, 97.9, 96.2, 55.4, 38.2, 10.7; FT-IR (neat) 2937, 1716, 1602, 1552, 1511, 1377, 1249, 1027, 832, 756 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 279.0974, calcd for C₁₃H₁₅N₂O₅ 279.0975.

3-Methyl-4-[2-nitro-1-(thiophen-2-yl)ethyl]-1,2-oxazol-5-ol (3m)

2-[(*E*)-2-nitroethenyl]thiophene (**1c**) (193 mg, 1.24 mmol), 3-methylisoxazol-5(4*H*)-one (**2b**) (123 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 1 h. The product was obtained as a greenish yellow semisolid (256 mg, 81% yield). R_f 0.40 (pet ether/EtOAc = 50/50); ¹H NMR (500 MHz, CDCl₃ without DABCO) δ 7.44 (br s, 1H), 7.16 (d, *J* = 5.0 Hz, 1H), 6.98 (d, *J* = 3.2 Hz, 1H), 6.92-6.9 (m, 1H), 5.20 (dd, *J* = 12.9, 9.6 Hz, 1H), 4.87 (dd, *J* = 13.1, 6.3 Hz, 1H), 4.74 (dd, *J* = 9.1, 6.5 Hz, 1H), 2.15 (s, 3H); ¹³C NMR (125 MHz, CDCl₃ without DABCO) δ 172.1, 161.4, 140.5, 127.4, 125.5, 125.1, 94.7, 76.6, 33.7, 10.6; FT-IR (neat) 3106, 2958, 1721, 1555, 1378, 1214, 751, 668 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 255.0438, calcd for C₁₀H₁₁N₂O₄S 255.0434.

3-(4-chlorophenyl)-4-(2-nitro-1-phenylethyl)-1,2-oxazol-5-ol (3n)

[(*E*)-2-nitroethenyl]benzene (**1a**) (184 mg, 1.24 mmol), 3-(4-chlorophenyl)isoxazol-5(4*H*)-one (**2c**) (242 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 30 mins. The product was obtained as a yellow semisolid (340 mg, 79% yield). R_f 0.29 (CHCl₃/MeOH = 98/02); ¹H NMR (500 MHz, CDCl₃ with DABCO) δ 7.39-7.38 (m, 3H), 7.32 -7.27 (m, 5H), 7.23-7.2 (m, 1H), 5.52 (t, J = 11.4 Hz, 1H), 4.67 (dd, J = 11.5, 5.8 Hz, 1H), 4.43 (dd, J = 11, 5.8 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃ with DABCO) δ 176.9, 164.5, 141.1, 134.8, 131.2, 129.6, 128.9, 128.7, 128, 127.3, 82.1, 39.7, 29.8; FT-IR (neat) 2937, 1747, 1554, 1350 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 345.0635, calcd for C₁₇H₁₄ClN₂O₄ 345.0637.

4-(2-Nitro-1,2,3,4-tetrahydronaphthalen-1-yl)-3-phenyl-1,2-oxazol-5-ol (30)

3-Nitro-1,2-dihydronaphthalene (**1k**) (217 mg, 1.24 mmol), 3-phenylisoxazol-5(4*H*)-one (**2a**) (200 mg, 1.24 mmol), DABCO (139 mg, 1.24 mmol) were stirred in DCM (10 mL) for 24 h. The product was obtained as yellow solid (321 mg, 77% yield). R_f 0.45 (pet ether/EtOAc = 50/50); mp 145-147 °C; ¹H NMR (400 MHz,

CDCl₃ without DABCO) δ 7.59-7.5 (m, 5H), 7.19-7.12 (m, 3H), 6.98 (d, J = 7.4 Hz, 1H), 5.52 (td, J = 11.6, 3.5 Hz, 1H), 4.64 (d, J = 10.4 Hz, 1H), 3.16-3.09 (m, 1H), 3.03-2.99 (m, 1H), 2.58-2.55 (m, 1H), 2.40-2.30 (m, 1H). ¹³C NMR (100 MHz, CDCl₃ without DABCO) δ 170.6, 165.5, 134.9, 133.4, 132.1, 129.7, 129.0, 127.8, 127.4, 127.1, 126.5, 102.1, 84.4, 38.7, 28.7, 28.0; FT-IR (neat) 3065, 2956, 1709, 1547,1374,758, 698 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 337.1184, calcd for C₁₉H₁₇N₂O₄ 337.1183.

General Procedure for Reductive Cyclization (4a-n and 5)

To a stirred solution of Michael adduct **3** (0.5 mmol) in acetic acid (10 mL) was added zinc dust (5 mmol). The reaction mixture was stirred for 1 h at room temperature. After disappearance of the starting material (monitored by TLC), the reaction mixture was subjected for heating at 80 °C for 24 h and then filtered through celite. The reaction mixture was evaporated under reduced pressure to remove acetic acid. The residue was quenched with water, washed with saturated NaHCO₃ solution and extracted with ethyl acetate, dried over sodium sulfate and concentrated. Purification was done by column chromatography using chloroform/ MeOH as the eluent.

(3S,4S)-3-Benzoyl-4-phenylpyrrolidin-2-one (4a)

Michael adduct **3a** (170 mg) was used. The product was obtained as a brown solid (80 mg, 55% yield). >99:1 dr [determined by ¹H NMR]; R_f 0.59 (CHCl₃/MeOH = 98/02); mp 156-158 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.03 (m, 2H), 7.58-7.55 (m, 1H), 7.48-7.44 (m, 2H), 7.34-7.32 (m, 2H), 7.29-7.26 (m, 3H), 6.16 (br s, 1H), 4.53 (d, *J* = 7.0 Hz, 1H), 4.33 (dd, *J* = 15.0, 7.0 Hz, 1H), 3.96-3.89 (m, 1H), 3.53 (dd, *J* = 9.6, 6.9 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 195.1, 173.6, 141.4, 136.3, 133.6, 129.5, 129.1, 128.6, 127.5,127 57.5, 47.7, 43.4; FT-IR (neat) 3240, 2927, 1701, 1674, 1494, 1270, 1054, 757,698 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 266.1174, calcd for C₁₇H₁₆NO₂ 266.1176.

(3S,4S)-3-Benzoyl-4-(4-methoxyphenyl)pyrrolidin-2-one (4b)

Michael adduct **3b** (178 mg) was used. The product was obtained as a brown solid (85 mg, 55% yield). >99:1 dr [determined by ¹H NMR]; R_f 0.55 (CHCl₃/MeOH = 98/02); mp 128-130 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 8.24 Hz, 2H), 7.55-7.58 (m, 1H), 7.47-7.44 (m, 2H), 7.19 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.5 Hz,

2H), 5.96 (br s, 1H), 4.49 (d, J = 7.5 Hz, 1H), 4.27 (dd, J = 14.9, 7.5 Hz, 1H), 3.91-3.88 (m, 1H), 3.78 (s, 3H), 3.48 (dd, J = 9.6, 6.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 195.3, 173.0, 158.8, 136.4, 133.6, 133.4, 129.5, 128.6, 128.0, 114.4, 57.8, 55.3, 48.0, 42.8; FT-IR (neat) 3263, 2973, 1705, 1676, 1515, 1448, 1250, 1033, 766 cm⁻¹; HRMS (ESI) [M + Na]⁺ found *m/z* 318.1100, calcd for C₁₈H₁₇NNaO₃ 318.1101.

(3S,4R)-3-Benzoyl-4-(thiophen-2-yl)pyrrolidin-2-one (4c)

Michael adduct **3c** (175 mg) was used. The product was obtained as a brown solid (78 mg, 52% yield). >99:1 dr [determined by ¹H NMR]; R_f 0.53 (CHCl₃/MeOH = 98/02); mp 77-79 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.06 (dd, J = 8.4, 1.2 Hz, 2H), 7.60-7.57 (m, 1H), 7.49-7.46 (m, 2H), 7.17 (dd, J = 4.8, 1.5 Hz, 1H), 6.93-6.9 (m, 2H), 6.62 (br s, 1H), 4.64 (dd, J = 15.3, 7.6 Hz, 1H), 4.54 (d, J = 7.9 Hz, 1H), 3.94-3.91 (m, 1H), 3.56 (dd, J = 9.6, 7.2 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 194.6, 172.4, 143.9, 136.3, 133.7, 129.5, 128.6, 127.1, 124.6, 124.2, 58.4, 48.2, 39; FT-IR (neat) 3225, 2924, 1704, 1677, 1448, 1261, 1029, 750, 699 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 272.0741, calcd for C₁₅H₁₄NO₂S 272.0740.

(3S,4R)-3-Benzoyl-4-propylpyrrolidin-2-one (4d)

Michael adduct **3d** (155 mg) was used. The product was obtained as a yellow solid (61 mg, 47% yield). >99:1 dr [determined by ¹H NMR]; R_f 0.56 (CHCl₃/MeOH = 98/02); mp >193 °C (compound decomposes above); ¹H NMR (500 MHz, CDCl₃) δ 8.08-8.06 (m, 2H), 7.61-7.57 (m, 1H), 7.51-7.48 (m, 2H), 6.40 (br s, 1H), 4.12 (d, *J* = 7.02 Hz, 1H), 3.64 (t, *J* = 8.24 Hz, 1H), 3.12-3.05 (m, 2H), 1.49 (q, *J* = 7.32 Hz, 2H), 1.29-1.24 (m, 2H), 0.88 (t, *J* = 7.32 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.3, 174.0, 136.8, 133.6, 129.4, 128.7, 56.4, 46.6, 38.5, 36.5, 20.7, 14.1; FT-IR (neat) 3019, 2928, 1703, 1677, 1448, 1214, 1033, 748, 667 cm⁻¹; HRMS (ESI) [M + Na]⁺ found *m*/*z* 254.1159, calcd for C₁₄H₁₇NNaO₂ 254.1151.

(3S,4S,5S)-3-Benzoyl-5-methyl-4-phenylpyrrolidin-2-one (4e)

Michael adduct **3e** (160 mg) was used. The product was obtained as a brown solid (85 mg, 62% yield). 65:15:12:8 dr [determined by ¹H NMR]; R_f 0.43 (CHCl₃/MeOH = 98/02); mp 92-94 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.99-7.97 (m, 2H), 7.55-7.52 (m, 1H), 7.44-7.41 (m, 2H), 7.33-7.29 (m, 4H), 7.27-7.25 (m, 1H), 6.07 (br s, 1H), 4.65 (d, *J* = 9.4 Hz, 1H), 3.92-3.83 (m, 2H), 1.34 (d, *J* = 5.9 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 196.1, 171.7, 139.6, 136.8, 133.6, 129.6, 129.1, 128.6, 127.8, 127.7, 58.7, 56.5, 52, 20.3; FT-IR (neat) 3019,
1706, 1680, 1214, 746, 668 cm⁻¹; HRMS (ESI) [M + Na]⁺ found *m/z* 280.1337, calcd for C₁₈H₁₈NO₂ 280.1332. *Methyl 4-[(3S,4S)-4-benzoyl-5-oxopyrrolidin-3-yl]benzoate (4f)*

Michael adduct **3f** (185 mg) was used. The product was obtained as an orange solid (84 mg, 52% yield). 94:6 dr [determined by ¹H NMR]; R_f 0.38 (CHCl₃: MeOH = 98/02); mp 100-102 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.03 (m, 2H), 8.00 (d, J = 8.4 Hz, 2H), 7.58 (t, J = 7.5, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.35 (d, J = 8.3 Hz, 2H), 6.15 (br s, 1H), 4.52 (d, J = 7.2 Hz, 1H), 4.41 (dd, J = 14.9, 6.9 Hz, 1H), 3.97 (d, J = 8.7 Hz, 1H), 3.90 (s, 3H), 3.54 (dd, J = 9.6, 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 194.7, 172.3, 166.6, 146.5, 136.1, 133.8, 130.4, 129.5, 129.4, 128.6, 127.1, 57.3, 52.2, 47.4, 43.2; FT-IR (neat) 3020, 1720, 1711, 1284, 1054, 743, 668 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 324.1233, calcd for C₁₉H₁₈NO₄ 324.1230.

(3S,4S)-4-(1,3-Benzodioxol-5-yl)-3-benzoylpyrrolidin-2-one (4g)

Michael adduct **3g** (176 mg) was used. The product was obtained as a pink solid (84 mg, 55% yield) 83:17 dr [determined by ¹H NMR]; $R_f 0.36$ (CHCl₃/MeOH = 98/02); mp 160-162 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (dd, J = 8.3, 1.1 Hz, 2H), 7.60-7.56 (m, 1H), 7.48-7.45 (m, 2H), 6.77 (d, J = 1.1 Hz, 1H), 6.73-6.72 (m, 2H), 6.45 (br s, 1H), 5.93 (s, 2H), 4.47 (d, J = 7.4 Hz, 1H), 4.25 (dd, J = 15.0, 7.3 Hz, 1H), 3.89 (d, J = 9.0 Hz, 1H), 3.47 (dd, J = 9.6, 6.7 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 195.3, 173.0, 148.3, 147.0, 136.5, 135.2, 133.8, 130.2, 129.6, 128.7, 120.5, 108.7, 107.37, 101.3, 57.9, 48.15, 43.4; FT-IR (neat) 3020, 1708, 1679, 1506, 1479, 1214, 1055, 1033, 743, 668 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 310.1075, calcd for C₁₈H₁₆NO₄ 310.1074. (*3S.4S*)-*3-Benzoyl-4-(4-chlorophenyl)pyrrolidin-2-one (4h)*

Michael adduct **3h** (172 mg) was used. The product was obtained as a yellow solid (87 mg, 58% yield). 81:19 dr [determined by ¹H NMR]; R_f 0.49 (CHCl₃/MeOH = 98/02); mp 116-118 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.04-8.03 (m, 2H), 7.60-7.57 (m, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 6.32 (br s, 1H), 4.48 (d, *J* = 7.3 Hz, 1H), 4.33 (dd, *J* = 14.8, 7.2 Hz, 1H), 3.94 (t, *J* = 8.9 Hz, 1H), 3.50 (dd, *J* = 9.7, 6.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 194.8, 139.9, 136.3, 133.9, 133.5, 129.8, 129.3, 128.8,

128.5, 57.6, 47.8, 42.8; FT-IR (neat) 3019, 2924, 1703, 1677, 1493, 1214, 1054, 1033, 751, 668 cm⁻¹; HRMS (ESI) $[M + H]^+$ found *m/z* 300.0787, calcd for C₁₇H₁₅ClNO₂ 300.0786.

(3S,4R)-3-Benzoyl-4-cyclohexylpyrrolidin-2-one (4i)

Michael adduct **3i** (160 mg) was used. The product was obtained as orange yellow solid (56 mg, 41% yield). >99:1 dr [determined by ¹H NMR]; $R_f 0.51$ (CHCl₃/MeOH = 98/02); mp 135-137 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.10-8.08 (m, 2H), 7.60 (t, J = 7.4 Hz, 1H), 7.51 (t, J = 7.7 Hz, 2H), 6.05 (br s, 1H), 4.22 (d, J = 8.5 Hz, 1H), 3.60 (t, J = 8.8 Hz, 1H), 3.17-3.07 (m, 2H), 1.74-1.62 (m, 5H), 1.39-1.30 (m, 2H), 1.21-1.10 (m, 2H), 1.03-0.97 (m, 1H), 0.91-0.88 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 196.4, 173.9, 137.0, 133.5, 129.5, 128.7, 54.1, 44.9, 44.2, 42.2, 31.5, 30.6, 26.2, 26.1, 26.0; FT-IR (neat) 3225, 3017, 2924, 1701, 1678, 1448, 1339, 1214, 1055, 1033, 753, 667 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 272.1645, calcd for C₁₇H₂₂NO₂ 272.1645. (*3S*.4*S*)-*3-Benzoyl-4-(naphthalen-2-vl)pyrrolidin-2-one (4j*)

Michael adduct **3j** (182 mg) was used. The product was obtained as a dark brown solid (70 mg, 44% yield). >99:1 dr [determined by ¹H NMR]; R_f 0.44 CHCl₃/MeOH = 98/02); mp 142-145 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.05-8.03 (m, 2H), 7.84-7.77 (m, 3H), 7.72 (d, J = 0.7 Hz, 1H), 7.57-7.54 (m, 1H), 7.49-7.4 (m, 5H), 6.32 (br s, 1H), 4.64 (d, J = 7.1 Hz, 1H), 4.5 (dd, J = 14.9, 6.7 Hz, 1H), 4.03-3.99 (m, 1H), 3.64 (dd, J = 9.5, 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 195.3, 173.1, 138.8, 136.4, 133.8, 133.5, 132.7, 129.6, 129.2, 128.7, 127.8, 127.7, 126.6, 126.2, 125.9, 124.9, 57.7, 48.0, 43.7; FT-IR (neat) 3226, 3057, 2923, 1701, 1674, 1487, 1268, 1033, 748, 687 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 316.1333, calcd for C₂₁H₁₈NO₂ 316.1332.

(3S,4S)-3-Acetyl-4-phenylpyrrolidin-2-one (4k)

Michael adduct **3k** (127 mg) was used. The product was obtained as a brown solid (58 mg, 56% yield). >99:1 dr [determined by ¹H NMR]; R_f 0.46 (CHCl₃/MeOH = 98/02); mp 111-113 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.32 (m, 2H), 7.28-7.25 (m, 3H), 6.53 (br s, 1H), 4.19 (dd, J = 15.6, 8.2 Hz, 1H), 3.78-3.76 (m, 1H), 3.67 (d, J = 8.1 Hz, 1H), 3.42 (dd, J = 9.7, 7.2 Hz, 1H), 2.41 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.5, 172.5, 141.2, 129, 127.4, 127.1, 62.4, 47.5, 41.3, 30.6; FT-IR (neat) 3284, 2923, 1688, 1492, 1260, 1052, 754, 698 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 204.1019, calcd for C₁₂H₁₄NO₂ 204.1019.

(3S,4S)-3-Acetyl-4-(4-methoxyphenyl)pyrrolidin-2-one (4l)

Michael adduct **31** (152 mg) was used. The product was obtained as a buff white solid (64 mg, 50% yield). >99:1 dr [determined by ¹H NMR]; $R_f 0.59$ (CHCl₃/MeOH = 98/02); mp 110-112 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 6.50 (br s, 1H), 4.14 (dd, J = 15.9, 8.2 Hz, 1H), 3.80 (s, 3H), 3.75 (t, J = 9.2 Hz, 1H), 3.63 (d, J = 8.3 Hz, 1H), 3.39 (dd, J = 9.7, 7.4 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.7, 172.6, 133.1, 158. 8, 133.1, 128.1, 114.3, 62.6, 55.3, 47.6, 40.7, 30.7; FT-IR (neat) 3261, 2956, 1687, 1514, 1441, 1246, 1031, 828 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 234.1127, calcd for C₁₃H₁₆NO₃ 234.1125.

(3S,4R)-3-Acetyl-4-(thiophen-2-yl)pyrrolidin-2-one (4m)

Michael adduct **3m** (135 mg) was used. The product was obtained as a brown semisolid (52 mg, 47% yield). >99:1 dr [determined by ¹H NMR]; R_f 0.61 (CHCl₃/MeOH = 98/02); ¹H NMR (500 MHz, CDCl₃) δ 7.19 (dd, J = 5.1, 1.1 Hz, 1H), 6.94 (dd, J = 5.1, 3.5 Hz, 1H), 6.91 (d, J = 3.4 Hz, 1H), 5.96 (br s, 1H), 4.49 (dd, J = 16.1, 8.0 Hz, 1H), 3.80 (t, J = 9.0 Hz, 1H), 3.65 (d, J = 8.3 Hz, 1H), 3.46 (dd, J = 9.5, 7.6 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 202.1, 171.6, 144.1, 127.2, 124.7, 124.3, 63, 47.7, 37, 30.8; FT-IR (neat) 3262, 3018, 2923, 1697, 1486, 1215, 1055, 749, 668 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 210.0588, calcd for C₁₀H₁₂NO₂S 210.0583.

(3S,4S)-3-(4-chlorobenzoyl)-4-phenylpyrrolidin-2-one (4n)

Michael adduct **3n** (173 mg) was used. The product was obtained as a yellow semisolid (77 mg, 51% yield). >99:1 dr [determined by ¹H NMR]; R_f 0.33 (CHCl₃/MeOH = 98/02); ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.39-7.31 (m, 3H), 7.28-7.27 (m, 2H), 6.18 (br s, 1H), 4.46 (d, *J* = 7.3 Hz, 1H), 4.34 (dd, *J* = 14.8, 7.4 Hz, 1H), 3.93 (t, *J* = 9.0 Hz, 1H), 3.53 (dd, *J* = 9.6, 6.6 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 193.9, 172.6, 141.3, 134.7, 131.1, 129.7, 129.2, 129.0, 127.7, 127.1, 57.8, 47.9, 43.2; FT-IR (neat) 3032, 2955, 1708, 1489, 1220, 1014, 1033, 759 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 300.0785, calcd for C₁₇H₁₅CINO₂ 300.0786.

2-Phenyl-3H-benzo[e]indole $(5)^3$

Michael adduct **3n** (178 mg, 0.5 mmol) was reacted with Zn (0.346 mg, 5 mmol) according to the general procedure for reductive cyclization. After heating the reaction mass at 80 °C for 12 h, Zn was removed and the mixture was further refluxed in AcOH for 48 h in open air. After usual work up; the mixture was purified by column chromatography. The product was obtained as a white solid (80 mg, 62% yield). R_f 0.55 (pet ether/EtOAc = 90/10); mp 135-137 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.67 (br s, 1H), 8.27 (d, *J* = 7.7 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.60-7.55 (m, 2H), 7.62-7.53 (m, 3H), 7.48-7.41 (m, 3H), 7.38-7.37 (m, 1H), 7.34-7.31 (m, 1H); ¹³C NMR (125 MHz, CDCl₃) δ 136, 133.2, 132.4, 129.3, 129.2, 128.6, 128, 127.3, 125.8, 124.8, 124.3, 123.5, 123.3, 122.9, 112.5, 99.3; FT-IR (neat) 3372, 3019, 2927, 1719, 1604, 1284, 1214, 1074, 754 cm⁻¹; HRMS (ESI) [M + H]⁺ found *m/z* 244.1125, calcd for C₁₈H₁₄N 244.1121.

Crystal data and structure of 4a

Supplementary crystallographic data for the compound **4a** (CCDC **1489354**) can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data and structure refinement for4a

Identification code	cu_M35_R_0m			
Empirical formula	C ₁₇ H ₁₅ NO ₂			
Formula weight	265.30			
Temperature	296(2) K			
Wavelength	1.54178 Å			
Crystal system	Triclinic			
Space group	P -1			
Unit cell dimensions	a = 5.6408(8) Å	alpha= 74.130(5)°.		
	b = 10.3136(1) Å	beta= 89.422(6)°.		
	c = 12.233(2) Å	gamma= 86.861(6)°.		
Volume	683.52(16) Å ³			
Z	2			
Density (calculated)	1.289 Mg/m ³			
Absorption coefficient	0.679 mm ⁻¹			
F(000)	496			
Crystal size	0.49 x 0.47 x 0.45mmm ³			
Theta range for data collection	2.72 to 25.00°.			
Index ranges	6<=h<=6, 11<=k<=11, 27	/<=1<=27		
Reflections collected	25501			
Independent reflections	2073 [R(int) = 0.0365]			
Completeness to theta =	25.00° 99.8 %			
Max. and min. transmission	0.9594 and 0.9561			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	2424 / 0 / 181			
Goodness-of-fit on F ²	1.157			

Final R indices [I>2sigma(I)]	R1 = 0.0817, $wR2 = 0.2499$
R indices (all data)	R1 = 0.0979, wR2 = 0.2749
Extinction coefficient	n/a
Largest diff. peak and hole	0.318 and -0.398 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for cu_m35_r_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
O(1)	3313(4)	5560(2)	3620(2)	61(1)	
O(2)	-1800(3)	3674(2)	2807(2)	54(1)	
N(5)	4174(4)	3434(2)	4785(2)	45(1)	
C(1)	3314(5)	4328(2)	3848(2)	40(1)	
C(2)	2383(4)	3535(2)	3066(2)	31(1)	
C(3)	2251(4)	2104(2)	3844(2)	33(1)	
C(4)	4179(5)	2056(2)	4742(2)	40(1)	
C(1')	2554(4)	980(2)	3274(2)	33(1)	
C(2')	893(5)	-4(2)	3439(2)	41(1)	
C(3')	1183(5)	-1061(3)	2956(3)	55(1)	
C(4')	3130(6)	-1164(3)	2293(2)	54(1)	
C(5')	4786(6)	-188(3)	2114(2)	53(1)	
C(6')	4519(5)	862(3)	2606(2)	42(1)	
C(7')	49(4)	4177(2)	2492(2)	34(1)	
C(8')	134(4)	5437(2)	1556(2)	35(1)	
C(9')	-1831(5)	6357(3)	1374(2)	46(1)	
C(10')	-1871(6)	7508(3)	488(3)	58(1)	
C(11')	25(6)	7770(3)	-248(2)	58(1)	
C(12')	1980(6)	6878(3)	-81(2)	58(1)	
C(13')	2031(5)	5726(3)	820(2)	45(1)	

O(1)-C(1)	1.224(3)
O(2)-C(7')	1.203(3)
N(5)-C(1)	1.336(3)
N(5)-C(4)	1.436(3)
N(5)-H(5)	0.8600
C(1)-C(2)	1.531(3)
C(2)-C(7')	1.528(3)
C(2)-C(3)	1.528(3)
C(2)-H(2)	0.9800
C(3)-C(1')	1.508(3)
C(3)-C(4)	1.543(3)
C(3)-H(3)	0.9800
C(4)-H(4A)	0.9700
C(4)-H(4B)	0.9700
C(1')-C(6')	1.390(3)
C(1')-C(2')	1.392(3)
C(2')-C(3')	1.377(4)
C(2')-H(2')	0.9300
C(3')-C(4')	1.375(4)
C(3')-H(3')	0.9300
C(4')-C(5')	1.383(5)
C(4')-H(4')	0.9300
C(5')-C(6')	1.376(4)
C(5')-H(5')	0.9300
C(6')-H(6')	0.9300
C(7')-C(8')	1.481(3)
C(8')-C(13')	1.383(3)
C(8')-C(9')	1.398(3)
C(9')-C(10')	1.371(4)
C(9')-H(9')	0.9300
C(10')-C(11')	1.380(4)
C(10')-H(10')	0.9300
C(11')-C(12')	1.377(4)
C(11')-H(11')	0.9300
C(12')-C(13')	1.381(4)
C(12')-H(12')	0.9300

Table 3. Bond lengths [Å] and angles $[\circ]$ for cu_m35_r_0m.

C(13')-H(13')	0.9300
C(1)-N(5)-C(4)	114.0(2)
C(1)-N(5)-H(5)	123.0
C(4)-N(5)-H(5)	123.0
O(1)-C(1)-N(5)	127.3(2)
O(1)-C(1)-C(2)	125.1(2)
N(5)-C(1)-C(2)	107.64(19)
C(7')-C(2)-C(3)	115.36(19)
C(7')-C(2)-C(1)	111.63(18)
C(3)-C(2)-C(1)	103.62(17)
C(7')-C(2)-H(2)	108.7
C(3)-C(2)-H(2)	108.7
C(1)-C(2)-H(2)	108.7
C(1')-C(3)-C(2)	115.93(18)
C(1')-C(3)-C(4)	113.76(18)
C(2)-C(3)-C(4)	102.30(18)
C(1')-C(3)-H(3)	108.2
C(2)-C(3)-H(3)	108.2
C(4)-C(3)-H(3)	108.2
N(5)-C(4)-C(3)	102.95(18)
N(5)-C(4)-H(4A)	111.2
C(3)-C(4)-H(4A)	111.2
N(5)-C(4)-H(4B)	111.2
C(3)-C(4)-H(4B)	111.2
H(4A)-C(4)-H(4B)	109.1
C(6')-C(1')-C(2')	117.9(2)
C(6')-C(1')-C(3)	121.7(2)
C(2')-C(1')-C(3)	120.4(2)
C(3')-C(2')-C(1')	121.1(3)
C(3')-C(2')-H(2')	119.4
C(1')-C(2')-H(2')	119.4
C(4')-C(3')-C(2')	120.4(3)
C(4')-C(3')-H(3')	119.8
C(2')-C(3')-H(3')	119.8
C(3')-C(4')-C(5')	119.1(2)
C(3')-C(4')-H(4')	120.5
C(5')-C(4')-H(4')	120.5
C(6')-C(5')-C(4')	120.7(3)

C(6')-C(5')-H(5')	119.7
C(4')-C(5')-H(5')	119.7
C(5')-C(6')-C(1')	120.8(3)
C(5')-C(6')-H(6')	119.6
C(1')-C(6')-H(6')	119.6
O(2)-C(7')-C(8')	121.4(2)
O(2)-C(7')-C(2)	120.4(2)
C(8')-C(7')-C(2)	118.1(2)
C(13')-C(8')-C(9')	118.0(2)
C(13')-C(8')-C(7')	123.2(2)
C(9')-C(8')-C(7')	118.7(2)
C(10')-C(9')-C(8')	120.7(3)
C(10')-C(9')-H(9')	119.6
C(8')-C(9')-H(9')	119.6
C(9')-C(10')-C(11')	120.4(3)
C(9')-C(10')-H(10')	119.8
C(11')-C(10')-H(10')	119.8
C(12')-C(11')-C(10')	119.8(3)
C(12')-C(11')-H(11')	120.1
С(10')-С(11')-Н(11')	120.1
C(11')-C(12')-C(13')	119.8(3)
C(11')-C(12')-H(12')	120.1
C(13')-C(12')-H(12')	120.1
C(12')-C(13')-C(8')	121.3(2)
C(12')-C(13')-H(13')	119.4
C(8')-C(13')-H(13')	119.4

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U33	U23	U13	U12	
O(1)	94(2)	26(1)	63(1)	-10(1)	-38(1)	-3(1)	
O(2)	36(1)	50(1)	65(1)	5(1)	-4(1)	-5(1)	
N(5)	64(2)	33(1)	37(1)	-8(1)	-21(1)	-4(1)	
C(1)	51(2)	30(1)	40(1)	-7(1)	-16(1)	-6(1)	
C(2)	35(1)	27(1)	29(1)	-6(1)	-6(1)	-3(1)	
C(3)	37(1)	30(1)	32(1)	-4(1)	-5(1)	-5(1)	
C(4)	52(2)	30(1)	34(1)	-3(1)	-13(1)	-7(1)	
C(1')	38(1)	26(1)	32(1)	-3(1)	-10(1)	-1(1)	
C(2')	43(1)	35(1)	43(1)	-7(1)	-7(1)	-6(1)	
C(3')	65(2)	35(2)	65(2)	-14(1)	-15(2)	-14(1)	
C(4')	77(2)	36(2)	54(2)	-20(1)	-15(1)	7(1)	
C(5')	60(2)	48(2)	49(2)	-15(1)	-3(1)	9(1)	
C(6')	45(1)	36(1)	41(1)	-6(1)	-4(1)	-2(1)	
C(7')	34(1)	32(1)	36(1)	-8(1)	-6(1)	-1(1)	
C(8')	36(1)	34(1)	34(1)	-7(1)	-11(1)	-1(1)	
C(9')	48(2)	39(2)	47(2)	-5(1)	-9(1)	7(1)	
C(10')	65(2)	44(2)	57(2)	-3(1)	-16(1)	14(1)	
C(11')	82(2)	40(2)	44(2)	4(1)	-19(2)	-3(1)	
C(12')	63(2)	59(2)	42(2)	2(1)	-3(1)	-10(1)	
C(13')	45(2)	43(2)	42(2)	-3(1)	-5(1)	1(1)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for cu_m35_r_0m. The anisotropic displacement factor exponent takes the form: -2p²[$h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}$]

C(4)-N(5)-C(1)-O(1)-172.7(3)C(4)-N(5)-C(1)-C(2)5.3(3) O(1)-C(1)-C(2)-C(7')-42.4(4)N(5)-C(1)-C(2)-C(7')139.6(2) O(1)-C(1)-C(2)-C(3)-167.1(3)N(5)-C(1)-C(2)-C(3)14.8(3)C(7')-C(2)-C(3)-C(1')86.2(2) C(1)-C(2)-C(3)-C(1')-151.5(2)C(7')-C(2)-C(3)-C(4)-149.39(19)-27.1(2)C(1)-C(2)-C(3)-C(4)C(1)-N(5)-C(4)-C(3)-22.9(3)C(1')-C(3)-C(4)-N(5)155.8(2)C(2)-C(3)-C(4)-N(5)29.9(2)C(2)-C(3)-C(1')-C(6')54.3(3) -63.9(3)C(4)-C(3)-C(1')-C(6')C(2)-C(3)-C(1')-C(2')-128.0(2)C(4)-C(3)-C(1')-C(2')113.8(2) C(6')-C(1')-C(2')-C(3')0.0(4)C(3)-C(1')-C(2')-C(3')-177.8(2)C(1')-C(2')-C(3')-C(4')-0.2(4)C(2')-C(3')-C(4')-C(5')-0.4(4)C(3')-C(4')-C(5')-C(6')1.1(4) C(4')-C(5')-C(6')-C(1')-1.4(4)C(2')-C(1')-C(6')-C(5')0.8(4)C(3)-C(1')-C(6')-C(5')178.6(2)C(3)-C(2)-C(7')-O(2)13.1(3)C(1)-C(2)-C(7')-O(2)-104.9(3)C(3)-C(2)-C(7')-C(8')-167.81(19)C(1)-C(2)-C(7')-C(8')74.3(3) O(2)-C(7')-C(8')-C(13')-148.9(3)C(2)-C(7')-C(8')-C(13') 32.0(3) O(2)-C(7')-C(8')-C(9')28.4(4)C(2)-C(7')-C(8')-C(9')-150.7(2)C(13')-C(8')-C(9')-C(10') 0.2(4)C(7')-C(8')-C(9')-C(10')-177.2(3)C(8')-C(9')-C(10')-C(11') 0.7(5)

Table 5. Torsion angles [°] for cu_m35_r_0m.

C(9')-C(10')-C(11')-C(12')	-0.8(5)
C(10')-C(11')-C(12')-C(13')	0.1(5)
C(11')-C(12')-C(13')-C(8')	0.9(5)
C(9')-C(8')-C(13')-C(12')	-1.0(4)
C(7')-C(8')-C(13')-C(12')	176.3(3)

Symmetry transformations used to generate equivalent atoms:

X-Ray data of 4l

Fig: crystal structure of 41

Supplementary crystallographic data for the compound **4l** (CCDC **1492205**) can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

Crystal data and structure refinement for 4l

Identification code	mo_md42_0m			
Empirical formula	$C_{13}H_{15}NO_{3}$			
Formula weight	233.26			
Temperature	250(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_1/c$			
Unit cell dimensions	a = 5.21520(7)Å	alpha= 90°.		
	b = 9.89840(14) Å	beta= $94.5570(5)^{\circ}$.		
	c =23.0406 (3) Å	gamma= 90°.		
Volume	1185.65(3) Å ³			
Ζ	4			
Density (calculated)	1.307 Mg/m ³			
Absorption coefficient	0.093mm ⁻¹			
F(000)	496			
Crystal size	0.49 x 0.47 x 0.45mm ³			
Theta range for data collection	2.72 to 25.00°.			
Index ranges	6<=h<=6, 11<=k<=11, 27	/<=]<=27		
Reflections collected	25501			
Independent reflections	2073 [R(int) = 0.0365]			
Completeness to theta =	25.00° 99.8 %			
Max. and min. transmission	0.9594 and 0.9561			
Refinement method	Full matrix leastsquares on F ²			
	C 22			

Data / restraints / parameters	2073 / 0 / 157
Goodness-of-fit on F ²	1.091
Final R indices [I>2sigma(I)]	R1 = 0.0418, $wR2 = 0.1128$
R indices (all data)	R1 = 0.0469, WR2 = 0.1172
Extinction coefficient	0.026(4)
Largest diff. peak and hole	0.291 and -0.185 e.Å ⁻³

Table 2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for mo_md42_0m. U (eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)	
O(1)	-2321(2)	6087(1)	-96(1)	47(1)	
O(2)	-1110(2)	8977(1)	788(1)	53(1)	
O(3)	5947(3)	7283(2)	3423(1)	63(1)	
N(5)	-3354(3)	5116(1)	756(1)	45(1)	
C(1)	-2007(3)	5918(2)	434(1)	38(1)	
C(2)	-2(3)	6651(2)	844(1)	34(1)	
C(3)	-1068(3)	6479(2)	1440(1)	36(1)	
C(4)	-2496(3)	5125(2)	1374(1)	47(1)	
C(1')	848(3)	6611(2)	1964(1)	36(1)	
C(2')	2773(3)	7582(2)	1983(1)	45(1)	
C(3')	4454(3)	7770(2)	2472(1)	49(1)	
C(4')	4238(3)	6983(2)	2960(1)	43(1)	
C(5')	2353(4)	6011(2)	2953(1)	52(1)	
C(6')	674(4)	5835(2)	2459(1)	49(1)	
C(7')	6084(5)	6407(2)	3899(1)	79(1)	
C(8')	257(3)	8087(2)	629(1)	38(1)	
C(9')	2216(4)	8314(2)	204(1)	57(1)	

O(1)-C(1)	1.2309(19)
O(2)-C(8')	1.2082(19)
O(3)-C(4')	1.368(2)
O(3)-C(7')	1.394(3)
N(5)-C(1)	1.326(2)
N(5)-C(4)	1.459(2)
N(5)-H(5)	0.8700
C(1)-C(2)	1.534(2)
C(2)-C(8')	1.515(2)
C(2)-C(3)	1.531(2)
C(2)-H(2)	0.9900
C(3)-C(1')	1.511(2)
C(3)-C(4)	1.536(2)
C(3)-H(3)	0.9900
C(4)-H(4A)	0.9800
C(4)-H(4B)	0.9800
C(1')-C(6')	1.383(2)
C(1')-C(2')	1.388(2)
C(2')-C(3')	1.383(2)
C(2')-H(2')	0.9400
C(3')-C(4')	1.381(2)
C(3')-H(3')	0.9400
C(4')-C(5')	1.374(3)
C(5')-C(6')	1.392(2)
C(5')-H(5')	0.9400
C(6')-H(6')	0.9400
C(7')-H(7'1)	0.9700
C(7')-H(7'2)	0.9700
C(7')-H(7'3)	0.9700
C(8')-C(9')	1.487(2)
C(9')-H(9'1)	0.9700
C(9')-H(9'2)	0.9700
C(9')-H(9'3)	0.9700
C(4')-O(3)-C(7')	117.92(17)
C(1)-N(5)-C(4)	114.04(13)
C(1)-N(5)-H(5)	123.0

Table 3. Bond lengths [Å] and angles [°] for mo_md42_0m.

C(4)-N(5)-H(5)	123.0
O(1)-C(1)-N(5)	126.99(15)
O(1)-C(1)-C(2)	125.23(14)
N(5)-C(1)-C(2)	107.75(13)
C(8')-C(2)-C(3)	116.46(13)
C(8')-C(2)-C(1)	108.48(12)
C(3)-C(2)-C(1)	102.78(12)
C(8')-C(2)-H(2)	109.6
C(3)-C(2)-H(2)	109.6
C(1)-C(2)-H(2)	109.6
C(1')-C(3)-C(2)	116.33(12)
C(1')-C(3)-C(4)	115.99(13)
C(2)-C(3)-C(4)	102.51(12)
C(1')-C(3)-H(3)	107.1
C(2)-C(3)-H(3)	107.1
C(4)-C(3)-H(3)	107.1
N(5)-C(4)-C(3)	102.12(12)
N(5)-C(4)-H(4A)	111.3
C(3)-C(4)-H(4A)	111.3
N(5)-C(4)-H(4B)	111.3
C(3)-C(4)-H(4B)	111.3
H(4A)-C(4)-H(4B)	109.2
C(6')-C(1')-C(2')	116.92(14)
C(6')-C(1')-C(3)	121.91(14)
C(2')-C(1')-C(3)	121.04(13)
C(3')-C(2')-C(1')	121.96(15)
C(3')-C(2')-H(2')	119.0
C(1')-C(2')-H(2')	119.0
C(4')-C(3')-C(2')	119.97(16)
C(4')-C(3')-H(3')	120.0
C(2')-C(3')-H(3')	120.0
O(3)-C(4')-C(5')	125.53(16)
O(3)-C(4')-C(3')	115.06(16)
C(5')-C(4')-C(3')	119.39(15)
C(4')-C(5')-C(6')	119.97(16)
C(4')-C(5')-H(5')	120.0
C(6')-C(5')-H(5')	120.0
C(1')-C(6')-C(5')	121.79(16)

C(1')-C(6')-H(6')	119.1
C(5')-C(6')-H(6')	119.1
O(2)-C(8')-C(9')	122.91(15)
O(2)-C(8')-C(2)	120.91(15)
C(9')-C(8')-C(2)	116.16(14)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for mo_md42_0m. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

	U11	U ²²	U33	U23	U13	U12	
O(1)	51(1)	53(1)	35(1)	-3(1)	-7(1)	-2(1)	
O(2)	64(1)	40(1)	55(1)	4(1)	8(1)	11(1)	
O(3)	72(1)	71(1)	43(1)	-2(1)	-19(1)	4(1)	
N(5)	46(1)	47(1)	42(1)	-2(1)	-7(1)	-11(1)	
C(1)	38(1)	38(1)	37(1)	-5(1)	-4(1)	6(1)	
C(2)	32(1)	37(1)	32(1)	-1(1)	-2(1)	4(1)	
C(3)	36(1)	38(1)	34(1)	0(1)	0(1)	2(1)	
C(4)	51(1)	48(1)	41(1)	4(1)	-5(1)	-10(1)	
C(1')	38(1)	38(1)	32(1)	-1(1)	2(1)	4(1)	
C(2')	50(1)	52(1)	33(1)	4(1)	-1(1)	-6(1)	
C(3')	50(1)	56(1)	40(1)	-2(1)	-3(1)	-9(1)	
C(4')	47(1)	48(1)	34(1)	-7(1)	-5(1)	10(1)	
C(5')	68(1)	52(1)	35(1)	9(1)	-3(1)	2(1)	
C(6')	57(1)	49(1)	41(1)	7(1)	-3(1)	-9(1)	
C(7')	112(2)	76(2)	45(1)	1(1)	-22(1)	7(1)	
C(8')	37(1)	42(1)	34(1)	2(1)	-7(1)	1(1)	
C(9')	53(1)	62(1)	57(1)	15(1)	11(1)	1(1)	

C(4)-N(5)-C(1)-O(1)	179.46(16)
C(4)-N(5)-C(1)-C(2)	-2.36(18)
O(1)-C(1)-C(2)-C(8')	36.0(2)
N(5)-C(1)-C(2)-C(8')	-142.19(13)
O(1)-C(1)-C(2)-C(3)	159.91(14)
N(5)-C(1)-C(2)-C(3)	-18.31(16)
C(8')-C(2)-C(3)-C(1')	-83.74(16)
C(1)-C(2)-C(3)-C(1')	157.84(12)
C(8')-C(2)-C(3)-C(4)	148.62(13)
C(1)-C(2)-C(3)-C(4)	30.20(15)
C(1)-N(5)-C(4)-C(3)	21.90(18)
C(1')-C(3)-C(4)-N(5)	-159.16(13)
C(2)-C(3)-C(4)-N(5)	-31.31(16)
C(2)-C(3)-C(1')-C(6')	-144.36(16)
C(4)-C(3)-C(1')-C(6')	-23.7(2)
C(2)-C(3)-C(1')-C(2')	39.8(2)
C(4)-C(3)-C(1')-C(2')	160.49(15)
C(6')-C(1')-C(2')-C(3')	0.2(3)
C(3)-C(1')-C(2')-C(3')	176.25(15)
C(1')-C(2')-C(3')-C(4')	-0.3(3)
C(7')-O(3)-C(4')-C(5')	10.7(3)
C(7')-O(3)-C(4')-C(3')	-170.96(18)
C(2')-C(3')-C(4')-O(3)	-178.08(15)
C(2')-C(3')-C(4')-C(5')	0.4(3)
O(3)-C(4')-C(5')-C(6')	177.85(16)
C(3')-C(4')-C(5')-C(6')	-0.4(3)
C(2')-C(1')-C(6')-C(5')	-0.3(3)
C(3)-C(1')-C(6')-C(5')	-176.27(15)
C(4')-C(5')-C(6')-C(1')	0.4(3)
C(3)-C(2)-C(8')-O(2)	-26.8(2)
C(1)-C(2)-C(8')-O(2)	88.51(17)
C(3)-C(2)-C(8')-C(9')	154.94(14)
C(1)-C(2)-C(8')-C(9')	-89.80(16)

Table 5. Torsion angles [°] for mo_md42_0m.

Symmetry transformations used to generate equivalent atoms:

References

- (a) J. Lopchuk, R. Hughes and G. Gribble, *Org. Lett.*, 2013, **15**, 5218; (b) T. Naveen, S. Maity, U. Sharma and D. Maiti *J. Org. Chem.* 2013, **78**, 5949; (c) S. Cai, S. Zhang, Y. Zhao and D. Wang, *Org. Lett.*, 2013, **15**, 2660; (d) L. Munoz, A. Rodriguez, G. Rosell, M. Boscha and A. Guerrero *Org. Biomol. Chem.*, 2011, **9**, 8171; (e) B. Trost, and C. Muller, *J. Am. Chem. Soc.*, 2008, **130**, 2438.
- (a) A. Griesbeck, M. Franke, J. Neudörfl and H. Kotaka, *Beilstein J. Org. Chem.*, 2011, 7, 127; (b) P. Too, Y. Wang and S. Chiba, *Org. Lett.*, 2010, 12, 5688; (c) I. Dias-Jurberg, F. Gagosz and S. Zard, *Org. Lett.*, 2010, 12, 416.
- 3. E. Farney and T. Yoon, Angew. Chem. Int. Ed., 2014, 53, 793.

¹H and ¹³C NMR spectra of compounds

3a ¹H-NMR (500 MHz, CDCl₃):

3a ¹³C-NMR (125 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

3a ¹³C-NMR (100 MHz, DMSO-d₆)

3b ¹³C-NMR (100 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

3c ¹³C-NMR (125 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

3d ¹³C-NMR (125 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

 $3e^{13}$ C-NMR (100 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

 $3f^{13}$ C-NMR (125 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

3h ¹³C-NMR (100 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

3i ¹H-NMR (500 MHz, CDCl₃): In absence of DABCO

3i¹³C-NMR (125 MHz, CDCl₃): In absence of DABCO

*3j*¹³C-NMR (125 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

3k ¹³C-NMR (125 MHz, CDCl₃): In absence of DABCO

31 ¹H-NMR (500 MHz, CDCl₃): In absence of DABCO

3m ¹³C-NMR (125 MHz, CDCl₃): In absence of DABCO

3n ¹³C-NMR (125 MHz, CDCl₃): In presence of DABCO (δ 44-46 ppm)

30¹³C-NMR (100 MHz, CDCl₃): In absence of DABCO

4a ¹³C-NMR (125 MHz, CDCl₃)

4b ¹³C-NMR (125 MHz, CDCl₃)

S50

4h ¹³C -NMR (100 MHz, CDCl₃)

4j¹³C -NMR (125 MHz, CDCl₃)

— 173.94

/ 137.01 / 133.56 / 129.52 / 128.78

r 77.41 77.16 r 76.91 54.11

44.96 44.21 42.28 31.53 30.60 26.16 26.16 26.16

4k ¹³C-NMR (125 MHz, CDCl₃)

4l ¹³C-NMR (125 MHz, CDCl₃)

4m ¹³C-NMR (125 MHz, CDCl₃)

4*n* ¹³C-NMR (125 MHz, CDCl₃)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10