Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

# **Supporting Information**

# MoO<sub>x</sub>-pyridine organic-inorganic hybrid wires as a reusable and highly selective

### catalyst for the oxidation of alcohols: a comparison study between reaction-

# controlled phase-transfer catalysis and heterogeneous catalysis

R. Malakooti<sup>\*</sup>, A. Feghhi

\* Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran.

E-mail: rmalakooti@birjand.ac.ir; reihaneh.malakooti@gmail.com; Tel: +989151604376; Fax: +985614437502

| Entry | Catalust                                                                                           | Time (h) | Reaction                   | Con. | Sel. | Υ.  |              |
|-------|----------------------------------------------------------------------------------------------------|----------|----------------------------|------|------|-----|--------------|
|       | Catalyst                                                                                           |          | conditions/T(°C)           | (%)  | (%)  | (%) | Ref.         |
| 1     | PVMo/C                                                                                             | 22       | Toluene/100                | 97   | 100  | -   | [1]          |
| 2     | (NH <sub>4</sub> ) <sub>5</sub> H <sub>6</sub> PV <sub>8</sub> -Mo <sub>4</sub> O <sub>40</sub> /C | 15       | Toluene/100                | -    | -    | 92  | [2]          |
| 3     | Crystalline Mo–V–O oxide                                                                           | 24       | Toluene/80                 | 22   | >99  | -   | [3]          |
| 4     | TEMPO/H <sub>5</sub> PV <sub>2</sub> Mo <sub>10</sub> O <sub>40</sub>                              | 6        | Acetone/100                | 99.6 | -    | -   | [4]          |
| 5     | $MoO_2(acac)_2$ -Cu(NO <sub>3</sub> ) <sub>2</sub>                                                 | 3        | Toluene/100                | 100  | 98   | 98  | [5]          |
| 6     | Q <sub>4</sub> [M(dmso) <sub>3</sub> Mo <sub>7</sub> O <sub>24</sub> ] (M=Ru(II),<br>Os(II))       | 12       | Toluene/120                | 99   | 99   | -   | [6]          |
| 7     | $H_5PV_2Mo_{10}O_{40}$                                                                             | 16       | Polyethylene<br>glycol/100 | 99   | 100  | -   | [7]          |
| 8     | {nBu <sub>4</sub> N} <sub>5</sub> {PV <sub>2</sub> Mo <sub>10</sub> O <sub>40</sub> }              | 15       | Benzonitrile/150           | 100  | -    | -   | [8]          |
| 9     | $[MoO(O_2)(QO)_2]$                                                                                 | 16       | Acetonitrile/82            | -    | -    | 14  | [9]          |
| 10    | MoO <sub>2</sub> (acac) <sub>n</sub> -NAP-MgO                                                      | 12       | Toluene/110                | -    | -    | 81  | [10]         |
| 11    | Polyaniline-supported MoO <sub>2</sub> (acac) <sub>2</sub>                                         | 12       | Toluene/100                | 86   | >98  | -   | [11]         |
| 12    | MoO <sub>x</sub> -pyridine wires                                                                   | 0.75     | Acetic acid/50             | 95   | 100  | -   | This<br>work |

Table S1 Comparison of the activity of the  $MoO_x$ -pyridine wires with other Mo-based catalysts used in oxidation of benzyl alcohol to benzaldehyde with  $O_2$ .

| Table S2 Comparison of the activity of the MoO <sub>x</sub> -pyridine wires with other Mo-based catalysts used | in |
|----------------------------------------------------------------------------------------------------------------|----|
| oxidation of benzyl alcohol to benzaldehyde with $H_2O_2$ .                                                    |    |

| Entry | Catalyst                                                                                                           | Time (h) | Reaction            | Con. | Sel. | Υ.   | Ref. |
|-------|--------------------------------------------------------------------------------------------------------------------|----------|---------------------|------|------|------|------|
|       |                                                                                                                    |          | conditions/T(°C)    | (%)  | (%)  | (%)  |      |
| 1     | Ph <sub>3</sub> P(CH <sub>2</sub> ) <sub>2</sub> PPh <sub>3</sub> [MoO(O <sub>2</sub> ) <sub>2</sub> (C            | 8        | Solvent free/90     | -    | -    | 93.8 | [12] |
|       | <sub>2</sub> O <sub>4</sub> ].2H <sub>2</sub> O                                                                    |          |                     |      |      | 9    |      |
| 2     | PPh <sub>4</sub> [MoO(O <sub>2</sub> ) <sub>2</sub> (HPEOH)]                                                       | 24       | Acetonitrile/Reflux | -    | -    | 63   | [13] |
| 3     | $MoO(O_2)(QO)_2$                                                                                                   | 16       | Acetonitrile/Reflux | -    | -    | 52   | [9]  |
| 4     | CpMo(CO)₃(C≡CPh)                                                                                                   | 8        | Solvent free/80     | 86   | 92   | 79   | [14] |
| 5     | [n-C <sub>4</sub> H <sub>9</sub> (p-C <sub>5</sub> H <sub>5</sub> N)] <sub>4</sub> Mo <sub>8</sub> O <sub>26</sub> | 6.5      | Solvent free/Reflux | 99.5 | 76.5 | -    | [15] |
| 6     | MoO <sub>x</sub> -pyridine wires                                                                                   | 0.75     | Solvent free/80     | 95   | 100  | -    | This |
|       |                                                                                                                    |          |                     |      |      |      | work |



Fig. S1 FT-IR spectrum of the calcined  $Mo_3O_{10}(C_5H_6N)_2$ .  $H_2O$  wires under air flow for 5 hours at 400 °C.



Fig. S2 SEM images of the calcined  $Mo_3O_{10}(C_5H_6N)_2$ .  $H_2O$  wires under air flow for 5 hours at 400 °C.



Fig. S3 UV-Vis spectrum of the  $Mo_3O_{10}(C_5H_6N)_2$ .  $H_2O$  wires. The absorption bands at 229 nm and 265 nm are attributed to LMCT transition ( $O^2 \rightarrow Mo^{6+}$ ) and electronic transition of the pyridine ring ( $\pi$ - $\pi^*$ ), respectively. In addition, the band in the range of 270-300 nm is the characteristic absorption of the bridging Mo-O-Mo structure [16].



Fig. S4 UV-Vis spectrum of the active catalyst II (during the reaction). LMCT transition ( $O^{2-} \rightarrow Mo^{6+}$ ) and the electronic transition ( $\pi$ - $\pi^*$ ) can be observed at 225 and 254 nm, respectively. The absorption band of the bridging Mo-O-Mo completely is gone and a new peak is appeared in the range of 290-350 nm indicated the presence of peroxo-molybdenum species.



Fig. S5 UV-Vis spectrum of the reused catalyst from the  $H_2O_2$  system. LMCT transition ( $O^{2-} \rightarrow Mo^{6+}$ ) and the electronic transition ( $\pi-\pi^*$ ) can be observed at 206 and 254 nm, respectively. In addition, the broad absorption in the range of 310-360 nm indicated the presence of  $O_2^{2-} \rightarrow Mo^{6+}$  electronic transition.



Fig. S6 SEM image of the reused catalyst from the  $\mathrm{O}_2$  system.



Fig. S7 SEM image of the reused catalyst from the  $H_2O_2$  system.

#### References

- 1 R. Neumann and M. Levin, J. Org. Chem., 1991, 56, 5707.
- 2 S. Fujibayashi, K. Nakayama, M. Hamamoto, S. Sakaguchi, Y. Nishiyama and Y. Ishii, J. Mol. Catal. A: Chem., 1996, 110, 105.
- 3 F. Wang and W. Ueda, Appl. Catal. A, 2008, 346, 155.
- 4 R. Ben-Daniel, P. Alsters and R. Neumann, J. Org. Chem., 2001, 66, 8650.
- 5 C. Y. Lorber, S. P. Smidt and J. A. Osborn, Eur. J. Inorg. Chem., 2000, 655.
- 6 A. M. Khenkin, L. J. W. Shimon and R. Neumann, Inorg. Chem., 2003, 42, 3331.
- 7 A. Haimov and R. Neumann, Chem. Commun., 2002, 876.
- 8 R. Ben-Daniel and R. Neumann, Angew. Chem. Int. Ed., 2003, 42, 92.
- 9 S. K. Maiti, K. M. Abdul Malik and R. Bhattacharyya, Inorg. Chem. Commun., 2004, 7, 823.
- 10 M. L. Kantam, J. Yadav, S. Laha, B. Sreedhar and S. Bhargava, Adv. Synth. Catal., 2008, 350, 2575.
- 11 S. Velusamy, M. Ahamed and T. Punniyamurthy, Org. Lett., 2004, 6, 4821.
- 12 X. Y. Shi and J. F. Wei, J. Mol. Catal. A: Chem., 2005, 229, 13.
- 13 N. Gharah, S. Chakraborty, A. K. Mukherjee and R. Bhattacharyya, Inorg. Chim. Acta., 2009, 362, 1089.
- 14 A. V. Biradar, M. K. Dongare and S. B. Umbarkar, Tetrahedron Lett., 2009, 50, 2885.
- 15 G. Ming-Lin and L. Hui-Zhen, *Green. Chem.*, 2007, 9, 421.
- 16 H. Jezlorowski and H. Knözinger , J. Phys. Chem., 1979, 83, 1166.