Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017

Supporting Information

New sensitive and selective calixarene based fluorescent sensors for the detection of Cs⁺ in an organoaqueous medium

Naresh Kumar,^a Qui Pham-Xuan,^a Alexis Depauw,^a Miryana Hemadi,^b Nguyet-Thanh Ha-Duong,^b Jean-Pierre Lefevre,^a Minh-Huong Ha-Thi^{*ac} and Isabelle Leray^{*a}

Figure S1. Absorption (a) and emission (b) spectra of Calix-COU-Benz (2.1 x 10^{-6} M) upon addition of a large excess of cesium acetate (9mM) in CH₃CN/H₂O (8/2; v/v). ($\lambda_{exc} = 397$ nm).

Figure S2: Calculated charges of oxygen atoms on optimized structures of the simplified calixarene and its Cs⁺ complex. Calculations were performed with the Gaussian software. All calculations were performed using the B3LYP/6-31G and the B3LYP/LANL2DZ method.¹ Total energy are -2609.43 and -2629.24 a.u. for the ligand and the Cs⁺ complex, respectively. A decrease of the charge on oxygen atoms on the 6 and 7 positions of the coumarin were observed on the Cs⁺ complex.

Figure S3. Fluorescence response at 562 nm of Calix-COU-Benz-CN (3.1 x 10^{-6} M) in the presence of Cs⁺ 100 μ M in CH₃CN/H₂O 8/2 and in CH₃CN/HEPES buffer 10 mM (pH = 7) 8/2.

Figure S4. Selectivity diagram of Calix-COU-Benz-CN (3.1 x 10⁻⁶ M) in the presence of selected competitive metal ions in CH₃CN/H₂O 8/2. [Cs+] = 100 μ M, , $\lambda_{exc} = 456$ nm, $\lambda_{em} = 562$ nm

Figure S5. Fluorescence intensity at 562 nm of Calix-COU-Benz-CN (3.1 x 10^{-6} M) in CH₃CN/H₂O 8/2, in the presence of Cs⁺ 100 μ M from various cesium salts.

Figure S6: ¹H NMR Spectrum of **1** (DMSO-*d*₆, 400 MHz).

Figure S7: ¹H NMR Spectrum of COU-Benz (CDCl₃, 400 MHz).

Figure S8: ¹³C NMR Spectrum of COU-Benz (CDCl₃, 100 MHz).

Figure S9: Mass spectrum (HRMS: TOF MS ES+) of COU-Benz.

Figure S10: ¹H NMR Spectrum of 2 (CDCl₃, 400 MHz).

Figure S11: ¹³C NMR Spectrum of 2 (CDCl₃, 100 MHz).

--7.975 --7.975 --7.975 --7.975 --7.975 --7.975 --7.975 --7.975 --7.260 --7.109 --7.10 9.038 -3.0 -2.5 -2.0 1.5 Iupensity 1.0 11 11/11 11 -0.5 U. 曲 Ш ulii -0.0 HH HHH H HANNE HA ¥ H 4.55 4.27 4.56 8.60 8.60 4.53 16.13 2221 2233 2230 2246 2246 827 4.14 1.77 -0.5 10 9 3 8 7 5 4 2 1 6 f1 (ppm)

Figure S12: Mass spectrum (HRMS: TOF MS ES+) of 2.

Figure S13: ¹H NMR Spectrum of Calix-COU-Benz (CDCl₃, 400 MHz).

Figure S14: ¹³C NMR Spectrum of Calix-COU-Benz (CDCl₃, 100 MHz).

Figure S15: Mass spectrum (HRMS: TOF MS ES+) of Calix-COU-Benz.

Figure S16: ¹H NMR Spectrum of Calix-COU-Benz-CN (CDCl₃, 400 MHz).

Figure S17: ¹³C NMR Spectrum of Calix-COU-Benz-CN (CDCl₃, 100 MHz).

Figure S18: Mass Spectrum (HRMS: TOF MS ES+) of Calix-COU-Benz-CN.

Figure S19: ¹H NMR Spectrum of COU-Benz-CN (DMSO-d₆, 400 MHz).

Figure S20: ¹³C NMR spectrum of Benz-CN (DMSO-d₆, 100 MHz).

Figure S21: Mass spectrum (HRMS: TOF MS ES+) of Benz-CN.

Reference

(1) Korovitch, A.; Mulon, J. B.; Souchon, V.; Lion, C.; Valeur, B.; Leray, I.; Ha-Duong, N. T.; Chahine, J. J. Phys. Chem. B **2009**, *113*, 14247.