[Supporting Information] ## H_2O_2 Assisted Room Temperature Oxidation of Ti_2C MXene for Li-ion Battery Anodes Bilal Ahmed¹, Dalaver H. Anjum¹, Mohamed N. Hedhili¹, Yury Gogotsi² and Husam N. Alshareef^{1,*} ¹Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955–6900, Saudi Arabia ²Department of Materials Science and Engineering, and A.J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA, 19104, USA ^{*}Corresponding author: husam.alshareef@kaust.edu.sa Figure S1 Nitrogen adsorption–desorption isotherms for as-prepared Ti_2CT_x and H_2O_2 treated MXene (immersion time ≈ 5 minutes) Figure S2 XPS survey spectrum of as-prepared Ti₂CT_x Figure S3 XPS survey spectrum of H_2O_2 treated Ti_2CT_x (immersion time ≈ 5 minutes) Figure S4 XPS survey spectrum of H_2O_2 treated MXene (immersion time ≈ 5 hours) Figure S5 Cyclic voltammetry curves of H_2O_2 treated Ti_2CT_x (immersion time ≈ 5 hours) at the scan rate of 0.2 mV/s