Supporting Information

A novel photoacoustic nanoprobe of ICG@PEG-Ag₂S for atherosclerosis targeting and imaging in vivo

Chenxin Wu[†], Yejun Zhang[†], Zhen Li[‡], Chunyan Li^{†*}, and Qiangbin Wang^{†*}

[†]Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and *i*-Lab, CAS Center for Excellence in Brain Science, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy

of Sciences, Suzhou 215123 (China)

[‡]School of Radiation Medicine and Protection, Soochow University, Suzhou 215123 (China)

Fig. S1 Optimized photoacoustic and fluorescent intensity by 1 mg Ag_2S coupling with various concentration of ICG from 0, 16, 32, 64, 128 to 256 nM. Ag_2S QD was excited at 808 nm with a semiconductor laser and the emission was collected with a 1000-nm longpass filter.

Fig. S2 TEM image of PEG-Ag₂S.

Fig. S3 UV absorbance spectra of PEG-Ag₂S, ICG and ICG@PEG-Ag₂S.

Fig. S4 Tissue penetration depth and imaging sensitivity of ICG. (A) Phantom images of a coneshaped agarose tube containing ICG (24 nM) at different depth. (B) The PA signal sensitivity of ICG at a depth of 2 mm underneath the skin of a living mouse after injection of ICG in various concentrations from 0.192 to 24 nM.

Fig. S5 Blood circulation of ICG@PEG-Ag₂S after injection by vein.

Fig. S6 Blood circulation of ICG after injection by vein.

Fig. S7 Time course of PA images of Apoe^{-/-} mice after ICG treatment.

Fig. S8 *Ex vivo* imaging of atherosclerotic plaques and correlation with histological assessment in C57BL/6 mice.