Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Scheme S1. Synthesis scheme of catechol-PEG: Polymerization of ethylene oxide (EO), followed by deprotection of CA-PEG with an aqueous solution of hydrochloric acid resulting in hydrophilic C-PEG.

Composition _{NMR}	$M_{n,\mathrm{NMR}}^{a}/$	$M_{n,GPC}^{b}$ /	$M_{\rm w,GPC}^{b}$ /	$M_{ m w}/M_{ m n}^{\ b}$
	g· mol ⁻¹	g· mol ⁻¹	g· mol ⁻¹	
CA-PEG ₆₇	3160	2450	2610	1.07

^aCalculated from ¹H-NMR spectrum. ^bDetermined by GPC in DMF (RI, PEG standard).

Figure S1. GPC trace (RI, DMF, PEG standard) of CA-PEG₆₇.

Figure S2. ¹H NMR spectrum (400 MHz, methanol- d_4) of catechol-PEG (C-PEG₆₇) after release of the protecting groups.

Figure S3. EDX spectrum from $Ni_{0.95}Fe_{0.05}$ precursors after a reaction time of 6 minutes.

Fig. S4: An SEM image to confirm a better overview and hierarchical arrangements of nanodomains in three dimensional (3D) patterns

Figure S5. (a) HRTEM of a superparticle showing that all the rods growing on the flat surface have the same orientation, with [111] as the main direction of growth (b) z-contrast image (STEM) of a plate standing on the short side (inset) and corresponding line scan elemental analysis to confirm hierarchically organized iron oxide around nickel nanoplates.

Figure S6. TEM images of (a) Ni_{0.95} Fe_{0.05}@ γ -Fe₂O₃ nanoparticles when Fe(CO)₅ was injected at 180 °C (b) at 240 °C and varying the amount of injected Fe(CO)₅, 10 μ L (c) and 200 10 μ L (d).

Figure S7. Digital camera photograph of reaction flask at various temperatures in the absence of $Fe(CO)_{5}$

Figure S8. Orientation of LAT2 (in violet) in relation with the (a) triangular and (b) hexagonal shaped superparticles. Images were taken in STEM μ -probe mode with an extremely reduced illumination. Three-dimensional diffraction reconstructions were performed by ADT. Scale bar: 100 nm.

Figure S9. Geometrical relations between hexagonal LAT2 (in violet) and the commensurate cubic cell with a~3.6 Å (in yellow) determined by P-XRP and reported in literature for \Box -metals and permalloys. (a) View along (100)* of the cubic cell, with LAT2 extra-reflections indicated by violet arrows. (b) Reciprocal lattice section showing the extra-reflections close to the 111 reflection of cubic Ni. Three-dimensional diffraction reconstructions were performed by ADT.

Figure S10. Magnetic properties of the Ni@ γ -Fe₂O₃ core shell nanoparticles. Magnetic hysteresis loops at 5 K and 300 K and temperature dependence of the magnetization in field-cooling (FC) and zero-field-cooling (ZFC) of Ni@ γ -Fe₂O₃ heterodimer nanoparticles (a,b) and core-shell nanoparticles (c,d) respectively.