Supporting Information

Remarkable enhancement of upconversion luminescence on 2-D

anodic aluminum oxidephotonic crystals

He Wang, Ze Yin, Wen Xu, Donglei Zhou, Shaobo Cui, Xu Chen, Haining Cui, and Hongwei Song

Fig.Sl.1 (a) The UCL EF versus pore diameter (the constant thickness: 400±10nm) of the AAOs (the average diameter of NaYF₄: 54nm). Simulated electromagnetic field distribution of NaYF₄:Yb, Er/AAO/AI which the AAO's pore diameter is 60nm (b), 67nm (c), 77nm (d), 88nm (e) by the FDTD method.

Fig.SI.2 (a-d) The cross-section SEM images of NaYF₄:Yb³⁺, Er³⁺ films (the samples in Fig.3 (a)) with same film thickness (1.3µm) fabricated by different sizes of NaYF₄. 12nm (a), 35nm (b), 54 nm (c) and 60nm (d). (e-f) The cross-section SEM images of NaYF₄:Yb³⁺, Er³⁺ films (the samples in Fig.3 (b)) fabricated by same size of NaYF₄ (54 nm) with different film thickness 98nm (e), 957nm (f), 1332nm (g), 1644nm (h). (i-l) The cross-section SEM images of AAO films fabricated with different AAO diameters (the samples in Fig.SI.1). 60nm (i), 67nm (j), 77nm (k), 88nm (l).