Electronic Supplementary Information

Direct Deposition of Nanocrystalline Graphene on Insulating Substrates for Large-Scale Nanoelectromechanical Switches

Jian Sun,^{1,*} Marek E. Schmidt,¹ Manoharan Muruganathan,¹ Harold M. H. Chong,¹ Hiroshi Mizuta^{1,2}

¹ School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi 923-1211, Japan

²Nanoelectronics and Nanotechnologies Research Group, Faculty of Physical Sciences and Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.

*Corresponding author Email: sun-jian@jaist.ac.jp (J.S.)

Raman Spectrum Analysis

We provide the detailed information of the Raman spectrum fitting. Figure S1 is the representative Raman spectrum of sample with $T_d = 800$ °C which is plotted as Figure 1a in the main text.

Figure S1. Raman spectrum of the NCG film with $T_d = 800$ °C with 532 nm laser. Thin curves are the component curves obtained from peak fitting, and they are labeled accordingly.

Here, we used Lorentzian curve shapes for all sub-peaks with the exception of the D' peak (1627 cm⁻¹), which was fitted by a Fano-line shape. The individual components of the fit model are shown. Three primary peaks D, G and 2D peaks – the characteristic for defective graphene – locate at 1350, 1593, and 2675 cm⁻¹, respectively. Furthermore, the G-peak location is insignificantly affected by the excitation wavelength (confirmed with 532, 633 and 785 nm laser). Such characteristics, i.e. $I_{G}/I_{D} \approx 0.5$, G-peak location of ~1590 cm⁻¹ and its insensitivity to excitation wavelength, had been reported before for the graphene with nanocrystalline domains.^[11] Other peaks observed in this spectrum are $2A_{1g}$, D', D+D'', and D+D' (from low Raman shift to high), which had been reported for carbon films before.^[2,3] Their detailed information is listed as following. $2A_{1g}$ at 1270 cm⁻¹ originates from active vibrational modes of *sp*³-bonded carbon network; D' at 1627 cm⁻¹ is from intravalley defect; D+D'' at 2440 cm⁻¹ is due to intervalley double resonance; and D+D' at 2934 cm⁻¹ is a defect related band. The fitted Raman spectrum of a different sample deposited with $T_d = 750$ °C is provided in Figure S2. The 2D peak is also clearly observed.

Figure S2. Raman spectrum and its peak-fitting of the NCG film with $T_d = 750$ °C with 532 nm laser.

Additional mapping measurements of I_{2D}/I_{G} , L_{a} , d

Figure S3. (a), (b), and (c) are the mapping of I_{2D}/I_G , L_a , and *d* of a 4 cm × 4 cm at the same location in the film deposited at T_d of 850 °C, respectively. The dash-lines in (a) and (b) show the guidance of the boundaries of topographic patterns.

AFM Topographic images

Figure S4. Additional AFM images and the extracted rms roughness values $R_{\rm rms}$ of the samples deposited at the varied $T_{\rm d}$ with other conditions fixed (deposition time: 5 min, gas flow rates: CH₄ 60 sccm, H₂ 75 sccm).

Supplementary References

(1) Ferrari, A. C.; Robertson, J. *Philos. Trans. R. Soc. A* 2004, 362, 2477.
(2) Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. *Phy. Rep.* 2009, 473, 51.

(3) Martins Ferreira, E. H.; Moutinho, M. V. O.; Stavale, F.; Lucchese, M. M.; Capaz, R. B.; Achete, C. A.; Jorio, A. *Phys. Rev. B* **2010**, 82, 125429.