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SI-1. Optical microscopy and SEM observations of gold nanofilm formation 

step-by-step
An in situ optical microscopy investigation, with ex situ SEM images, of the interfacial 

gold nanofilms formed with 38 nm mean diameter (Ø) AuNPs at a water-DCE interface was 

performed in order to show the morphological changes of the interfacial gold nanofilm during 

the systematic increase of the interfacial AuNP surface coverage nanofilm ( ), see Fig. S1.AuNP
int

At low , such as at 0.1 and 0.2 monolayers (MLs, the definition of the AuNP
int

dimensionless ML term is given in the main text), the AuNPs were organized in low-density 

“floating AuNP islands”. Some of the latter were interconnected, whereas others were separated 

and independent, see Fig. S1A & B. Then, at a  of 0.4 ML, the AuNPs filled the majority AuNP
int

of the available surface area at the interface, eliminating any large voids in between the AuNP 

clusters on the micron scale. However, small voids were still seen, especially in SEM images 

(Fig. S1C). 

At a  of 0.6-0.8 ML, the density of the interfacial gold nanofilms increased AuNP
int

markedly (Fig. S1D & E). Significant numbers of cracks were seen on both the in situ optical 

and ex situ SEM images, perhaps indicative of the continuous rearrangement and increase in 

packing densities of the AuNPs in the interfacial nanofilms at these values of . Despite AuNP
int

this, it should be noted that the interfacial gold nanofilm in Fig. S1E is not extremely dense, 

being 20% below the maximum value of theoretically attainable by a hexagonally close-AuNP
int

packed arrangement. The morphology of these interfacial gold nanofilms, shown in Fig. S1D & 

E, possessed the maximum values for reflectance, as shown in Fig. 2 in the main text and 

discussed in detail therein. 

Beyond sub-monolayer conditions, with  of 1.0 and 2.0 ML Fig. S1F & G, large AuNP
int

horizontally stretched dark lines, perhaps representation of wrinkles in the interfacial gold 

nanofilms due to buckling at the interface, were observed in the optical images. The SEM images 

at these high AuNP surface coverages clearly show a huge proliferation of piles of AuNPs on top 

of the underlying 2D monolayer of AuNPs adsorbed at the interfaces. Both the macroscale effect 
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of wrinkling and the nanoscale effect of 3D nanostructuring of the interface lead to a significant 

loss of reflectance, as shown in Fig. 2 in the main text.

Figure S1. Comparison of 

optical microscopy images 

(50x magnification) 

performed in situ and ex 

situ SEM images of the 

interfacial gold nanofilms 

transferred to a silicon 

substrate. The coverages of 

the interface ( ) in AuNP
int

monolayer are as following: 

(A) 0.1 ML, (B) 0.2 ML, (C) 

0.4 ML, (D) 0.6 ML, (E) 0.8 

ML, (F) 1.0 ML, and (G) 2.0 

ML. Scales bars are from left 

to right 10 µm, 400 nm and 

200 nm.
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SI-2. Interfacial surface tension measurements by a pendant drop method
Pendant drop measurements were carried out on a drop shape analysis system DSA100 

(Kruss, Germany). All glassware used was cleaned with a mixture of nitric and hydrochloric acid 

(aqua regia), washed several times with pure water, dried and then treated with oxygen plasma 

for 30 minutes in order to eliminate any presence of other compounds. Each organic solution was 

vigorously shaken with Milli-Q water and subsequently the biphasic system was left overnight in 

order to obtain saturated solutions (aqueous with organic phase and organic with aqueous phase, 

respectively). 

Figure S2. Pendant drop measurements of the interfacial surface tension(γw/o) for each 

biphasic system studied: (A) water-1,2-dichloroethane (DCE), (B) water-α,α,α,-trifluorotoluene 

(TFT), (C) water-nitrobenzene (NB) and (D) water-nitromethane (MeNO2) systems.

Based on shapes of the obtained pendant drops and physical properties of the solvents 

used, values for the interfacial tension were calculated as follows:

 γ(w-DCE) = 30.5±0.3 mN·m–1. This value corroborates with the value of 28 mN·m–1 

reported previously.1,2 
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 γ(w-TFT) = 38.0±0.5 mN·m–1. This value is close to that reported for water | toluene 

biphasic systems as predicted by Bahramian et al.3 To the best knowledge of our 

knowledge, no previous work has measured a value of γ(w-TFT).

 γ(w-NB) = 24.4±0.2 mN·m–1.

 γ(w-MeNO2) = 16.0±0.2 mN·m–1. For MeNO2 the value is slightly higher than that 

predicted by Bahramian et al.3.
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SI-3. Comparison of the interfacial gold nanofilms formed with TTF at 

various water-organic solvent interfaces

Figure S3. Optical photographs of interfacial gold nanofilms formed at water-DCE, water-

TFT, water-NB and water-MeNO2 interfaces prepared with AuNPs of either 12 or 38 nm 

Ø. The Numbers under each picture display value in each case.AuNP
int
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SI-4. Influence of the interfacial surface tension on the interfacial gold 

nanofilm’s luster

Figure S4. Influence of the interfacial tension on optical responses from interfacial gold 

nanofilms: (A) Extinction and (B) total reflectance spectra for interfacial gold nanofilms 

prepared with 38 nm Ø AuNPs at water-DCE and water-TFT interfaces. (C, D) Optical 

photographs of the obtained nanofilms at water-DCE and water-TFT interfaces at value of AuNP
int

2.0 and 3.0 ML, respectively.

There are several types of interactions between NPs at liquid-liquid interfaces: capillary, 

electrostatic, Van der Waals, fluctuation and solvation.6,7 However, only a few of them, namely 

capillary and electrostatic forces, are strong enough to have a significant effect on relatively 

large NPs. Herein, we show that AuNPs may be assembled in closed-packed arrays of particles, 
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meaning that the electrostatic interactions between separate AuNPs are significantly minimized 

in comparison to colloidal citrate stabilized solutions of AuNPs, for example.8 Thus, the main 

force acting at the liquid-liquid interface and affecting the assembly of the AuNPs is a capillary 

immersion force. According to Bresme’s review6 and the work of Kralchevsky and Nagayama7, 

this capillary interaction may be defines as:

 (1) 12 2
cap / 0 /U ( ) ln( )qd

w o w oR K qd R qd  =

where is the interfacial tension, is the modified Bessel function of zeroth order, d is the 0 ( )K qd

distance between particles, q is the inverse capillary length in thin film. This equation is valid 

when d is much smaller than q (order of several nm–1) and when the radii of the two contact lines 

is much smaller that the particle separation.6Also, q is determined as:

 (2)'
/o( g ) / wq    

where is the derivative of the disjoining pressure with respect to the film thickness. Thus, the '

interfacial tension should have a major effect on interfacial gold nanofilms, causing a stronger 

capillary interaction between the AuNPs.

The interfacial surface tension for a water-TFT interface was determined as ~25% higher 

than that for a water-DCE interface (38 vs 30 mN/m, respectively), as shown vide supra. Thus, 

this higher interfacial surface tension at water-TFT interfaces results in stronger capillary 

interactions causing the formation of deep and large buckles and wrinkles. As a consequence, 

this directly leads to an increase in the scattering and subsequent absorption of the incident light 

for these interfacial gold nanofilms formed at high surface coverages. This effect is clearly 

shown in Fig. S4A & B and leads to significant increases in extinction and decreases in 

reflectance in comparison to interfacial gold nanofilms formed at water-DCE interfaces under 

otherwise identical experimental conditions. The lower interfacial tension of the latter is not 

strong enough to significantly buckle the interfacial gold nanofilms, keeping them relatively flat 

at the interface even at high surface coverages. The major changes in extinction and reflection 

profiles between the interfacial gold nanofilms formed at each water-organic solvent interface 

are clearly evident in the optical photographs shown in Fig. S4C & D: gold/yellow and shiny 

nanofilms at water-DCE interfaces and much dimmer gold nanofilms with no luster at water-

TFT interfaces.
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SI-5. Comparison of interfacial gold nanofilms formed on varying the nature 

of the lipophilic molecule dissolved in the oil droplet

Figure S5. Optical photographs of interfacial gold nanofilms at water-DCE interfaces 

prepared with (A) tetrathiafulvalene (TTF) and (B) neocuproine (NCP) molecules dissolved 

in the oil droplet. The nanofilms formed with both 12 and 38 nm Ø AuNPs are shown. The 

numbers under each picture display the value.AuNP
int

Neocuproine (NCP) molecules has previously been shown to promote the self-assembly 

of silver NPs into lustrous nanofilms.4,5 The structures of TTF and NCP molecules are given in 

Fig. S5. When NCP was dissolved in the DCE droplet, only those interfacial gold nanofilms 

formed with 12 nm Ø AuNPs exhibited similar optical responses to TTF-based assemblies. 

Meanwhile, with NCP, 38 nm Ø AuNPs formed black nanofilms, the origin of which is the 

variation of the interparticle distance on changing the ligand around the AuNPs in the interfacial 

gold nanofilm. NCP allows the AuNPs to approach closer to each other in the nanofilm, leading 

to strong interparticle plasmon coupling and a broadband absorbance, as clearly shown in Fig. 6 

in the main text and discussed in detail therein.
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