
Rapid quantitative chemical mapping of surfaces with sub-2nm resolution

Chia-Yun Lai1, Saverio Perri2, Sergio Santos1, Ricardo Garcia3, Matteo Chiesa1

1Laboratory for Energy and NanoScience (LENS), Institute Center for Future Energy (iFES), 

Masdar Institute of Science and Technology, Abu Dhabi, UAE

2Instititute Center for Water and Environment (iWater), Masdar Institute of Science and 

Technology, Abu Dhabi, UAE

3Instituto de Ciencia de Materiales de Madrid, CSIC Sor Juana Inés de la Cruz, 28049 Madrid, 

Spain

Supplementary 

Contents
Raw data and codes ......................................................................................................................................2

Ac determination ..........................................................................................................................................6

Force measurements .....................................................................................................................................7

Derivation of the bimodal expressions for Hamaker and dmin.....................................................................12

Linear Regression (Fig. 2) ..........................................................................................................................21

The two phases of calcite............................................................................................................................22

Derivation of main expressions in the text (4) and (5) ...............................................................................25

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2016



Raw data and codes

All raw data and codes (produced via Matlab and the R language/R studio) can be found at 

https://github.com/BimodalHamakerMaps. A Readme.md file is also provided at the site with 

instructions of how to reproduce all the processed data and figures in this article from the raw 

data. Matlab and R should be installed in the system before running the scripts and R should be 

callable from the Matlab scripts by adding the R executable to the environment, i.e. under 

Windows this is done by adding the folder containing the R.exe and Rscript.exe files to the 

environment.  The second mode amplitude was kept low throughout to approximately 0.1-0.3 nm 

while the set-point was always kept in the nm range. This is in agreement with most of the 

bimodal theory[1-3] that requires that A2<<A1. 

Some of the raw parameters and processed data from the images employed in this work are also 

summarized below in the form of tables. The parameters provided are Asp, A0, Ar, A0
C, dmin, R, 

and HIMG. R is given in nm (nominal) and the rest of parameters in the International System of 

Units.  Each raw corresponds to a bimodal image from Tables SI to SIV. 

HOPG

Asp A0 Ar Ao C dmin R HIMG

3.12E-09 4.77E-09 0.654109 0.28125 4.73E-10 10 1.58E-20

4.92E-09 5.3E-09 0.928434 0.3125 2.88E-10 10 9.04E-21

4.49E-09 5.3E-09 0.846415 0.3125 3.11E-10 10 1.46E-20

3.99E-09 5.3E-09 0.753132 0.3125 3.72E-10 10 2.29E-20

2.89E-09 3.18E-09 0.909245 0.1875 4.36E-10 10 6.99E-21

2.39E-09 3.18E-09 0.751478 0.1875 4.26E-10 10 1.32E-20

6.1E-09 7.53E-09 0.810019 0.44375 3.57E-10 10 3.16E-20

2.56E-09 2.87E-09 0.890814 0.2 4.26E-10 10 6.76E-21

https://github.com/BimodalHamakerMaps


2.4E-09 2.87E-09 0.835349 0.2 4.92E-10 10 9.84E-21

2.24E-09 2.87E-09 0.780199 0.2 5.47E-10 10 1.3E-20

2.08E-09 2.87E-09 0.725118 0.2 5.14E-10 10 1.31E-20

4.79E-09 5.31E-09 0.901544 0.37037 4.33E-10 10 1.76E-20

3.73E-09 5.31E-09 0.701638 0.37037 4.24E-10 10 3.4E-20

6.38E-09 6.91E-09 0.924279 0.481481 4.09E-10 10 2.43E-20

5.33E-09 6.91E-09 0.771982 0.481481 4.91E-10 10 6.14E-20

4.11E-09 5.22E-09 0.787211 0.351852 3.4E-10 10 1.8E-20

3.56E-09 5.22E-09 0.682466 0.351852 3.92E-10 10 2.64E-20

3.29E-09 5.22E-09 0.630083 0.351852 3.91E-10 10 2.68E-20

3.85E-09 5.22E-09 0.737417 0.351852 3.07E-10 10 1.35E-20

3.44E-09 3.95E-09 0.87032 0.266667 3.72E-10 10 1.19E-20

3.16E-09 3.95E-09 0.800369 0.266667 4.3E-10 10 1.96E-20

2.89E-09 3.95E-09 0.730849 0.266667 4.59E-10 10 2.43E-20

2.61E-09 3.95E-09 0.660899 0.266667 4.81E-10 10 2.82E-20

2.34E-09 3.95E-09 0.591631 0.266667 4.79E-10 10 2.89E-20

6.02E-09 6.59E-09 0.91357 0.444444 3.23E-10 10 1.58E-20

5.74E-09 6.59E-09 0.87157 0.444444 3.49E-10 10 2.21E-20

5.5E-09 6.59E-09 0.835474 0.444444 3.98E-10 10 3.22E-20

5.19E-09 6.59E-09 0.788282 0.444444 4.26E-10 10 3.98E-20

4.92E-09 6.59E-09 0.74657 0.444444 4.81E-10 10 5.32E-20

4.65E-09 6.59E-09 0.705161 0.444444 4.92E-10 10 5.73E-20

4.37E-09 6.59E-09 0.663449 0.444444 5.05E-10 10 6.25E-20

4.1E-09 6.59E-09 0.621706 0.444444 5.16E-10 10 6.62E-20

6.57E-09 7.41E-09 0.886028 0.5 3.55E-10 10 2.27E-20

6.29E-09 7.41E-09 0.849315 0.5 3.96E-10 10 3.33E-20

6.02E-09 7.41E-09 0.811739 0.5 4.3E-10 10 4.29E-20

5.75E-09 7.41E-09 0.77516 0.5 4.58E-10 10 5.28E-20

5.47E-09 7.41E-09 0.737961 0.5 4.84E-10 10 6.19E-20

5.19E-09 7.41E-09 0.700519 0.5 4.99E-10 10 6.77E-20

4.92E-09 7.41E-09 0.663644 0.5 5.12E-10 10 7.31E-20

4.65E-09 7.41E-09 0.62681 0.5 5.21E-10 10 7.68E-20

4.37E-09 7.41E-09 0.589773 0.5 5.23E-10 10 7.8E-20

4.1E-09 7.41E-09 0.552655 0.5 5.36E-10 10 8.28E-20

8.93E-09 1.17E-08 0.766089 0.485833 3.81E-10 10 6.69E-20

1.06E-08 1.33E-08 0.799932 0.552083 4.15E-10 10 8.86E-20

8.12E-09 1.33E-08 0.612845 0.552083 5.42E-10 10 1.66E-19

1.06E-08 1.43E-08 0.741377 0.59625 5.56E-10 10 1.77E-19

8.46E-09 1.43E-08 0.59144 0.59625 6.56E-10 10 2.53E-19

4.44E-09 5.23E-09 0.849101 0.37037 2.74E-10 10 1.2E-20

3.92E-09 5.23E-09 0.749082 0.37037 3.14E-10 10 1.9E-20



3.66E-09 5.23E-09 0.699101 0.37037 3.32E-10 10 2.24E-20

3.13E-09 5.23E-09 0.599101 0.37037 3.53E-10 10 2.64E-20

6.27E-09 6.8E-09 0.922356 0.481481 3E-10 10 1.4E-20

5.23E-09 6.8E-09 0.76851 0.481481 4.24E-10 10 4.45E-20

4.18E-09 6.8E-09 0.61462 0.481481 4.88E-10 10 6.43E-20

Table SI. Experimental and processed data from the 54 images obtained on HOPG in this work 

to validate the theory and discussed in the main text. This data has been employed to produce 

Fig. 2. All values are given employing the International System of Units.  

mica

Asp A0 Ar Ao C dmin R HIMG
4.89E-09 5.43E-09 0.90046 0.322581 4.94E-10 10 2.96E-20

5.97E-09 6.52E-09 0.916897 0.387097 4.85E-10 10 3.36E-20

5.43E-09 6.52E-09 0.833364 0.387097 5.22E-10 10 4.87E-20

5.16E-09 6.52E-09 0.791268 0.387097 5.33E-10 10 5.46E-20

6.89E-09 8.15E-09 0.846495 0.483871 5.65E-10 10 7.48E-20

5.03E-09 5.59E-09 0.89973 0.286111 4.57E-10 10 1.89E-20

3.93E-09 4.34E-09 0.904581 0.222222 4.14E-10 10 1.27E-20

3.52E-09 3.8E-09 0.926809 0.194444 4.28E-10 10 1.02E-20

2.01E-09 2.17E-09 0.923849 0.111111 4.93E-10 10 6.92E-21

7.43E-09 1.09E-08 0.683847 0.5125 6.68E-10 10 1.59E-19

9.03E-09 1.09E-08 0.831496 0.5125 5.3E-10 10 8.22E-20

9.97E-09 1.22E-08 0.818097 0.575 6.03E-10 10 1.28E-19

9.97E-09 1.22E-08 0.818097 0.5625 5.98E-10 10 1.28E-19

1.06E-08 1.22E-08 0.87 0.5625 5.38E-10 10 9.07E-20

1.17E-08 1.33E-08 0.882611 0.625 4.43E-10 10 4.44E-20

9.79E-09 1.33E-08 0.738687 0.625 7.05E-10 10 2E-19



Table SII. Experimental and processed data from the 16 images obtained on mica in this work to 

validate the theory and discussed in the main text. All values are given employing the 

International System of Units.  

PFDA

Asp A0 Ar Ao C dmin R HIMG
3.74E-09 4.95E-09 0.75497 0.583679 2.87E-10 10 9.97E-21

4.84E-09 5.4E-09 0.8955 0.636792 3.22E-10 10 1.02E-20

5.92E-09 6.46E-09 0.917395 0.761321 3.7E-10 10 2.12E-20

4.24E-09 4.3E-09 0.985874 0.507547 5.05E-10 10 2.5E-20

4.01E-09 5.3E-09 0.755925 0.625 2.65E-10 10 1.31E-20

3.72E-09 5.3E-09 0.701491 0.625 2.93E-10 10 1.64E-20

3.53E-09 5.3E-09 0.665396 0.625 2.73E-10 10 1.52E-20

3.33E-09 5.3E-09 0.628981 0.625 2.88E-10 10 1.7E-20

3.74E-09 4.95E-09 0.75497 0.583679 2.87E-10 10 9.97E-21

Table SIII. Experimental and processed data from the 9 images obtained on PFDA in this work 

to validate the theory and discussed in the main text. All values are given employing the 

International System of Units.  

calcite

Asp A0 Ar Ao C dmin R HIMG
5.80E-09 7.04E-09 8.24E-01 5.33E-01 4.30E-10 10 2.98E-20

3.20E-09 4.10E-09 7.80E-01 3.11E-01 4.60E-10 10 1.92E-20

6.66E-09 8.25E-09 8.07E-01 6.25E-01 4.80E-10 10 4.74E-20

5.71E-09 8.25E-09 6.92E-01 6.25E-01 5.50E-10 10 7.30E-20



5.60E-09 6.60E-09 8.48E-01 5.00E-01 3.90E-10 10 2.10E-19

Table SIV. Experimental and processed data from the 5 images obtained on calcite in this work 

to validate the theory and discussed in the main text. All values are given employing the 

International System of Units.  

Ac determination

In the main text, we have defined Ac as the minimum (or critical) free amplitude for a cantilever 

to experience bi-stability. The use of Ac to the determine effect tip radius has been first reported 

in 2012[4] stating that there exists a specific power-law relationship between Ac and effective tip 

radius. Here we showed the steps of how to determine Ac using amplitude or phase versus 

distance (APD) curves.

1) Set the drive frequency at the natural frequency of oscillation and a small value of A01 (4-

5 nm), a trigger point in the range of 0.5-2 nm. Experimental APD curves are acquired 

now.

2) Inspecting the APD curves that whether the attractive regime only prevails throughout or 

the repulsive regime has been reached. If only the attractive regime was observed, the 

value of A01 has to be increased.

3) As A01 is increased, a value of A01 is eventually reached and a transition to the repulsive 

regime is observed. This can be concluded by checking the APD curves where there is an 

abrupt jump in the curves.

4) As Ac exists as a range of A01 values, we take the minimum value as our critical 

amplitude to determine the effective tip radius.



Force measurements

III.A Force reconstruction from force profiles

Experimental force Fts versus d profiles were obtained from raw amplitude A (A ≡ A1 ≡ Asp) 

versus phase ϕ (ϕ=ϕ1) curves (APD curves) obtained on a sample. These curves were converted 

into Fts versus d profiles by exploiting the Sader-Jarvis-Katan (SJK) formalism (conservative 

forces) that consists of a series of integrals to be solved per point (d) as follows (see literature for 

details[5-7]):
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where Q is the quality factor and A0 is the free amplitude. All the experiments have been carried 

out with a Cypher AFM from Asylum Research and standard OLYMPUS cantilevers (AC160TS 

-40 N/m,  and  AC240TS – 2 N/m). Since it is well-known that the tip radius R significantly 

affects the interaction force between the tip and the surface[4], R was constantly monitored in 

situ during the experiments. The initial value of R was assumed to agree with the nominal values 

provided by the manufacturer, i.e. R ≈ 10 nm. 



The experimental steps to take AFM-APD curves are:

1) A sample was mounted for standard AFM (Cypher AFM from Asylum Research) data 

acquisition.  

2) A new AFM cantilever (OLYMPUS AC160TS with k=40N/m and Q factor≈ 500 or 

OLYMPUS AC240TS with k=2 N/m and Q factor≈ 100) was mounted on the AFM cantilever 

holder. 

3) The value of R was monitored[4] by acquiring standard[8] APD curves and these were used to 

compute the critical amplitude[9] Ac value in raw Volt units[4]. The initial value of R was 

assumed to agree with the nominal values provided by the manufacturer, i.e. R ≈ 10 nm. 

Provided Ac did not change for a given sample during the experiments, we assumed that R 

remained constant. 

4) Approximately 1000-2000 APDs were acquired immediately after computing the value of R 

for each tip. 

5) The raw APD curves were then converted into Fts versus distance d profiles as those presented 

in Figs. S1a for HOPG and S1b for PFDA. In Fig. S1 the raw data is shown in red dots and the 

Hamaker fits in blue lines. Each APD produces an Fts versus d profile. We defined d=0 at 

minima in Fts, i.e. when Fts coincides with the force of adhesion FAD.



Fig. S1 Raw experimental (red dots) HOPG and b) PFDA force profiles and (blue lines) best fits 

obtained by employing standard  linear regression on the raw data and the model in (1) for β=0.9. 

III.B Computation of the Hamaker coefficient from force versus d data

Force profiles (see Fig. S1) have been further parameterized in this work (see scheme of Fig. S2) 

in terms of the minima in force, i.e. force of adhesion FAD, via a β parameter such that Fts = βFAD, 

where β=0.1, 0.15, …, 0.9. Then linear regression on the raw force profiles was performed for 

data sets including data from the largest values of d to the values of d at which  β=0.1, 0.15, …, 

0.9 correspondingly. The H value resulting from these force curves is termed HFIT in order to 

differentiated from the value of H predicted by the Lifshitz theory (HLT)  and the value recovered 

from bimodal images (HIMG). It was found that the value of HFIT depended on β as shown in Fig. 

S3a (HOPG) and Fig. S4a (PFDA). 

https://en.wikipedia.org/wiki/Simple_linear_regression
https://en.wikipedia.org/wiki/Simple_linear_regression


Fig. S2

Figure S3: HOPG

In Fig. S3a the value of HFIT resulting from fitting force versus distances profiles from three 

different tips on a HOPG are shown with the help of triangles, crosses and circles as a function 

of β. Each point in the figure further corresponds to the average obtained for a given tip over 

~100-1000 force curves. The data is further presented in Fig. S3b in the form of a histogram that 

shows that the mean value of HFIT for all β β is HFIT ≈ 0.15 atto J as reported in the main text. 



Figure S4: PFDA

In Fig. S4a the value of HFIT resulting from fitting force versus distances profiles from three 

different tips on a PFDA sample are shown with the help of triangles, crosses and circles as a 

function of β as in Fig. S3.  Each point in the figure also further corresponds to the average 

obtained for a given tip over ~100-1000 force curves. The full range of data (5 tips) is further 

presented in Fig. S4b in the form of a histogram that shows that the mean value of HFIT for all β 

is HFIT ≈ 0.014 atto J as reported in the main text.  

 

Figure S5: mica

The values for HFIT for the mica sample were computed similarly and data is shown in Fig. S5 

for a tip with R≈10 nm (data points averaged over 1000 force curves) and R≈40 nm in crosses 

and circles respectively. The mean value is, in both cases, HFIT ≈ 0.1 atto J as stated in the main 

text. 



Fig. S5 Hamaker values obtained from force versus distance profiles on a mica sample as a 

function of β for a tip with radius R≈10 nm (crosses) and a tip with radius R≈40 nm (circles).

Derivation of the bimodal expressions for Hamaker and dmin

A General Virial expression for the van der Waals force

The bimodal theory[1, 2, 10-12] states that the virial V for modes 1 and 2 can be obtained 

directly from observables via (3) (reproduced below for clarity):
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By combining (S3) and (1), where (1) is the model for the force employed in this work as 

described in the main text, it can be shown[13] that 
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Combining (S3) and (S4) one equation with 2 unknowns, i.e. dmin and H, results. 

A second equation can be derived from the second mode Virial. On the other hand, the second 

virial should be expressed in terms of the tip position of the first mode z1 in order to make the 

calculations tractable. This simplification was proposed by Kawai et al.[3] and the 

approximations discussed in detail by Aksoy and Atalar [1] and others[2, 14]. Assuming that 

during a full first mode cycle the derivative is an even function of position, the simplifications 

proposed in the literature, assuming the model in (1), are equivalent to
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The expression in (S5) results from inserting (1) into (S8) and assuming harmonic motion as 

usual, i.e. z ≈ A1cos(ω1t-ϕ1) 

III.B  Solution of second mode virial for the van der Waals force

The objective is to solve the integral in (S8) that can be written as 
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

1

1 23 11
),(

uuba
dubaI

where a=dmin and b=A1.

Analytical solution of (S9)

After a few changes of variable the solution of (S9) can be found in close form as

𝐼 ≈
(2𝑎2 + 4𝑎𝑏 + 3𝑏2)𝐴𝑟𝑐𝑇𝑎𝑛[4.47 × 107 𝑎

𝑎 + 2𝑏 ]
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Hereafter equation (S10) is considered the analytical solution of (S9). Since (S10) is 

cumbersome, an approximation is sought. 



Approximate solution of (S10)

Considering that

𝐴𝑟𝑐𝑇𝑎𝑛[
4.47 × 107 𝑎 

𝑎 + 2𝑏
 ≈ 1.571

(S11)

Furthermore, from dimensional analysis, and neglecting the second term of (S10)

1,571(2𝑎2 + 4𝑎𝑏 + 3𝑏2)
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Furthermore, whenever b>>a, it follows that
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Hereafter (S13), or equivalently, (S14), is considered the approximate solution to (S9) and (S10) 

and it is simple enough for the purpose of this work. 



Comparison between the numerical integration and the analytic solution (S10) and 

the approximate solution (S13) 

As shown in the example in Fig. S6, the numerical solution coincides with the analytical solution 

in (S10) with errors smaller than 1% as compared to numerical integration of (S9). In the figure, 

the x axis is b=A1 and a=dmin has been set to 1nm. The physical implication is that for the range 

of set point amplitudes explored here, i.e. 1- 10 nm, the analytical solution coincides with the 

numerical integration of (S9).  These results have practical use since in attractive bimodal AFM 

the set point amplitude A1 or Asp lies in such range. See for example our Table I in the main text 

and other works in the literature [15-18].

 



Fig. S6. Comparison between numerical integration of (S9) and the analytical solution in (S10) 

and as a function of b, with a=1nm.

The next two figures (Fig. S7 and Fig. S8) show the results of the analytic solution in (S10) that, 

again, coincides with numerical integration of (S9) with errors smaller than 1% and the 

approximate solution in (S13). In Fig. S7 b ≡ A1=10 nm and a≡dmin is varied from 0.25 nm to 1 

nm. The approximation in (S13) produces errors smaller than 1%. An extreme case of operation 

is presented in Fig. (S8) for which b ≡ A1=0.5 nm and a≡dmin varies from 0.25 to 1 nm. In this 

extreme case errors are still predicted to be smaller than 10%.

Fig. S7- Analytical-numerical solution compared with the approximation in (S13) for b=10nm.



Fig. S8 Analytical-numerical solution compared with the approximated solution given by 

equation in (S13) with b=0.5nm.

Figs.S9 and S10 show the comparison between the numerical solution as a function of  b when is 

= 0.2nm and a= 1nm respectively. 𝑎



Fig. S9 Analytical-numerical solution compared with the approximated solution given by 

equation in (S13) with a=0.2 nm.



Fig. S10 Analytical-numerical solution compared with the approximated solution given by 

equation in (S13) with a=1 nm.

In summary, the error of the approximation in (S13) is always lower than 5% except in cases 

where a>b. In such cases the maximum error reaches 11% the range of parameters explored in 

the figures above.  In principle, provided a>b the error from (S13) tends to zero. The practical 

result here is that one can employ the approximation in (S13) provided the oscillation amplitude 

A1=Asp, i.e. b, is larger than the minimum distance of approach dmin, i.e. a. In any case, this is 

true in all our examples since, as corroborated from the force profiles, the decay length of the 

van der Waals forces (see Fig. S1) is always in the order of 0.5-2 nm while oscillation 

amplitudes employed in this work for Asp ar4e always larger than 2 nm.



 Linear Regression (Fig. 2)

For Fig. 2 the data from HIMG from Table SI for the HOPG sample has been employed to get best 

fits employing the following models

Fig. 2a

(S15)
rIMG AH 10  

From which the values provided in Table SIV resulted:

θ0 SE(θ0) θ1 SE(θ1) ρ
0.21 0.05 -0.21 0.07 0.13

Table IV Coefficients resulting from linear regression where only one regressor, associated with 

the normalized set point Ar=Asp/A0 is assumed. SE stands for the Standard error associated with 

the regressor. 

Fig. 2b

(S16)
 3010

C
IMG AH  

θ0 SE(θ0) θ1 SE(θ1) ρ
-0.01 0.01 0.66 0.06 0.68

Table V Coefficients resulting from linear regression where only one regressor, associated with 

the normalized critical amplitude  A0
C=Ac/A0 is assumed. 



Fig. 2c

(S17)
 30210

C
rIMG AAH  

From which the values provided in Table SVI below resulted:

θ0 SE(θ0) θ1 SE(θ1) θ2 SE(θ2) ρ
0.03 0.03 -0.17 0.03 0.64 0.05 0.77

Table VI Coefficients resulting from linear regression where two regressors associated with the 

normalized set point Ar=Asp/A0 and normalized critical amplitude  A0
C=Ac/A0 are assumed. 

The physical interpretation of the regressors is that HIMG depends linearly on the regressor with 

the coefficients of linearity θ provided in the tables. From the main text and Fig. 2 it was found 

that provided A0
C≈0.5-0.6 the value of H computed in the bimodal images was in agreement with 

the Lifshitz theory and the fitting from force profiles computed as described in section 2 (Force 

measurements) above. 

The two phases of calcite

In the main text we discuss the two regions probed from force curves obtained from amplitude 

and phase versus distance APD data. Two examples of force profiles, one on each region, are 

shown in Fig. S11. Hundreds of data points were obtained for each region and the regions could 



be distinguished directly from the raw phase 1 θ1, phase 2 θ2 or amplitude 2 A2 data as shown in 

Fig. S12. 

Fig. S11. Force profiles and fit of (1) for the two phases of calcite. 



Fig. S12 Raw phases (a) and (b) and second amplitude (c) for a calcite sample. 



Derivation of main expressions in the text (4) and (5)

Combining (S5) and (S14) 

(S18)1
5
min

2
2min2

83.0
6

),(
Ad

ARHdHV




Expression (S18) is the second equation necessary with the two unknowns required, i.e. dmin and 

H, that combined with (S4) results in a system of two equations in two unknowns. Solving for 

dmin the solution can be expressed as

(S19)03/2
minmin  cbdd

in accordance with  (4) in the main text. The coefficients b and c are found to be

(S20)

(S21)

  3/2
2

1

3/2

12011

21022

cos83.0
cos3

A
A

QAk
QAkb 













12Ac 



The zeros of (S19) were found here in Matlab with the help of the standard fzero function and 

initial values were assumed to lie in the 1 nm range. 

Provided dmin was found for a given pixel in the image, the solution for H in terms of V1 was 

trivial  (Asp=A1)
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and in terms of V2
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When no solution for (S19) were found H was not computed. Errors resulted in some pixels for 

which dmin was not found. Images for which 10% of pixels produced errors were discarded. In 

our case, this resulted mostly when working outside resonance, i.e. this formalism is based on the 

AFM being operated at the two modal resonances. 
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