Supporting Information Material

2	Bi ₂ O ₃ nanoparticles encapsulated in surface mounted metal-organic
3	frameworks thin films
4	Wei Guo ¹ , Chen Zhi ² , Chengwu Yang ¹ , Tobias Neumann ² , Christian Kübel ^{2, 3} , Wolfgang Wenzel ² ,
5	Alexander Welle ^{1, 3} , Wilhelm Pfleging ^{3,4} , Osama Shekhah ⁵ , Christof Wöll ¹ , Engelbert Redel ^{*1}
6	¹ Karlsruhe Institute of Technology, Institute of Functional Interfaces (IFG), Hermann-von-Helmholtz-Platz
7	1, 76344 Eggenstein-Leopoldshafen, Germany
8	² Karlsruhe Institute of Technology, Institute of Nanotechnology (INT), Hermann-von-Helmholtz-Platz 1,
9	76344 Eggenstein-Leopoldshafen, Germany
10	³ Karlsruhe Institute of Technology, Karlsruhe Nano Micro Facility (KNMF), Hermann-von-Helmholtz-Platz
11	1, 76344 Eggenstein-Leopoldshafen, Germany
12	⁴ Karlsruhe Institute of Technology, Institute of Advanced Materials (IAM), Hermann-von-
13	Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
14	⁵ Advanced Membranes and Porous Materials Center, King Abdulah University of Science and
15	Technology, Kingdom of Saudi-Arabia
16	

17

1

18 Materials and Methods:

19 *X-ray Diffraction (XRD)*: Each sample was characterized by using a Bruker D8 Advance equipped with a Si-20 strip detector (PSD Lynxeye©; position sensitive detector) with Cu $K_{a1,2}$ radiation ($\lambda = 0.15418$ nm) in θ - θ 21 geometry, variable slit on primary circle. Scans were run over various ranges with step width of $0.024^{\circ} 2\theta$ and 22 84 seconds, for higher order peaks up to 336 seconds per step. The 2θ angle scanning range to observe 23 corresponding peak to deposited film is picked 5° to 60°.

Infrared reflection absorption (IRRA) spectroscopy: IRRA spectra were measured using the infrared spectrometer (Bruker VERTEX 80) purged with dried air. The spectra were recorded in grazing incidence reflection mode at a fixed angle of incidence of 80° relative to the surface normal using mercury cadmium telluride (MCT) detector. Perdeuterated hexadecanethiol SAM on Au/Ti/Silicon substrates were used for reference measurements.

29 *Scanning electron microscopy (SEM):* HR-SEM cross-sectional measurements have been performed on a 30 Zeiss HR-SEM (Gemini Class) at 3-5 kV to check the continuity, compactness, and homogeneity of the 31 different prepared (loaded and unloaded) HKUST-1 thin films.

32 *Quartz Crystal Microbalance (QCM):* A quartz crystal microbalance (QCM) was employed to growth an 33 HKUST-1 SURMOF thin film on a QCM sensor in a clean and well-controlled manner to further perform the 34 uptake BiPh₃ experiments. The QCM sensor was placed in a flow cell (Q-Sense E4). Infiltration with guest molecules was achieved via a stream of liquid through the cell. The grown SURMOF QCM sensor was grown directly on gold wafer, which was functionalization with a 16-mercaptohexadecanoic acid self-assembled monolayer (MHDA SAM). SURMOF growth was carried out in situ in the QCM flow cell by alternating between the metal source solution (1 mM copper(II) acetate), a solution of 0.2 mM 1,3,5-benzenetricarboxylic acid (BTC) in ethanol and pure ethanol as described previously.

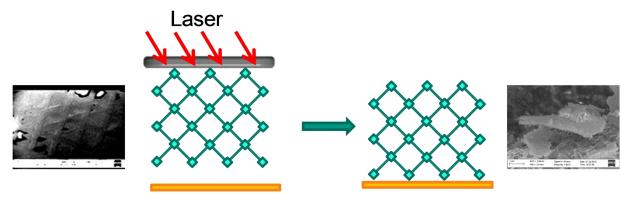
40 The *UV-Vis spectra* were recorded in the range of 200 nm to 800 nm by means of a Cary5000 spectrometer 41 with a UMA unit from Agilent. The UV-Vis spectra of the SURMOFs on the quartz substrate were measured 42 in transmission mode.

43 *Transmission electron microscopy* (TEM): Plane-view measurements have been performed using an image 44 aberration corrected FEI Titan 80-300 operated at 300 kV and equipped with a Gatan US1000 CCD camera 45 for TEM and SAED analysis and a Fischione HAADF detector for STEM imaging. An EDAX S-UTW 46 detector was used for EDX analysis. The SAED and STEM analysis was performed at LN₂ temperatures to 47 reduce electron beam damage of the HKUST-1. For TEM measurement, samples were prepared by remove 48 the Bi₂O₃@HKUST-1 thin films from quartz-glass sample surface through a laser ablation-process (see Fig. 49 S1) and transfer the thin films onto a holey carbon Au grid (Quantifoil GmbH).

50 *Laser-Ablation Process:* Bi_2O_3 @HKUST-1 has been directly grown on HR-TEM grids or was deposited as 51 crystal-pieces through a laser micromachining process. The latter approach was performed by laser lift-off 52 initiated by selective laser ablation using an excimer laser radiation source operating at a wavelength of 53 248 nm with a pulse length of 5 ns.¹

54 *Molecular modeling simulations* were performed using a Monte Carlo algorithm implemented in the 55 simulation package SIMONA with Lennard-Jones and Coulomb interaction. For details on geometry 56 optimization (using DFT) and the force field parameters, see reference. The Lennard-Jones parameters of Bi 57 were set to 1.7295 kcal/mol and 2.8 Å.²

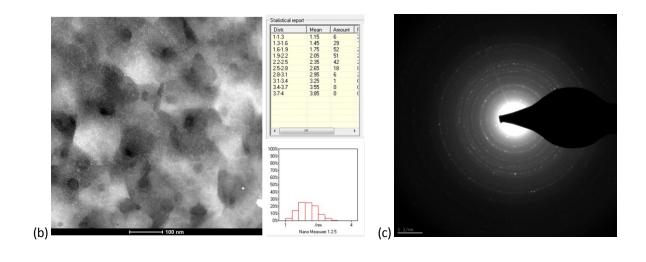
58 *Time-of-flight secondary ion mass spectrometry* (ToF-SIMS) was performed on a TOF.SIMS 5 instrument 59 (ION-TOF GmbH, Münster, Germany). For all experiments a short pulse width (2 ns) 20 keV C_{60}^+ ion beam 60 was applied as analysis beam. For quasi-static SIMS this beam was rastered over 500×500 µm² and the dose 61 density was limited to below 10¹¹ ions/cm² (static limit). For dynamic SIMS, an additional O_2^+ beam (500 eV) 62 was applied for erosion of a 450×450 µm² field with a concentric analysis field of 250×250 µm². Spectra 63 calibration was performed on C, Cu, Bi, and Bi₃O₄ peaks, mass deviations were below 20 ppm.

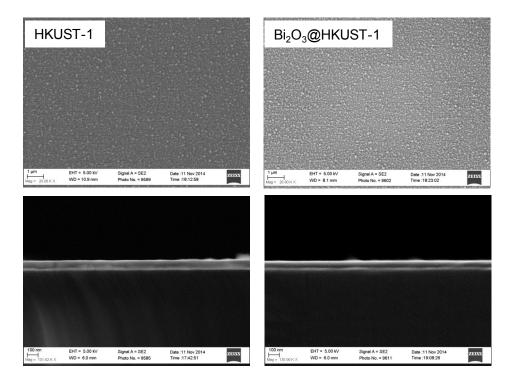

64 Electrospray ionisation mass spectrometry (ESI-MS) was

65 The Bi_2O_3 thin film sample for the XPS measurement was grown on the silicon wafer using the liquid 66 deposition method. The deposition solution was using the BiPh₃ solution which after irradiated with 255 nm 67 UV light for 5 h.

68 All HKUST-1 SURMOFs used in the present work were grown on modified Au substrates using the liquid-

phase epitaxy (LPE) method,¹ except parts of TEM and UV-vis samples were grown on quartz glass. The 69 70 surface modification was carried out by depositing a SAM (self-assembled monolayer) made from 16mercaptohexadecanoic acid (MHDA, 99%, Aldrich). The SURMOFs were fabricated using a spray system, as 71 described in detail in an earlier publication.³ The spray times were 15 s for the copper acetate solution and 25 72 73 s for the BTC solution. Each spray step was followed by a rinsing step (3 s) with pure ethanol to remove residual reactants. A total of 20-35 growth cycles were used for all SURMOFs investigated in this work. 74 Before further processing, all SURMOFs samples were activated by ultrasound in dichloromethane solution 75 for 5 min to remove residual solvent from the SURMOFs pores and characterized by X-ray diffraction (XRD) 76 77 (see Fig. 2b). Cross-sectional images recorded by scanning electron microscopy (SEM) demonstrate that the thickness of SURMOFs amounts to about 100 nm (see also Fig. S2). For BiPh₃ loading, a HKUST-1 78 SURMOF was placed into a 250 ml flask, which was then evacuated to 200 Pa at room temperature (RT) for 79 30 min. Subsequently, a freshly prepared solution of BiPh₃ (triphenylbismuth) in ethanol (1 mM, Aldrich) 80 was injected quickly into the reaction flask and heated to 65°C for 36 h. BiPh₃ is a simple organo-bismuth 81 compound which is quite stable under normal conditions.⁴ The loading of BiPh₃ into the HKUST-1 82 SURMOFs was analyzed in a quantitative fashion using a quartz crystal microbalance (QCM) (see Fig. S3). 83 The mass density of the activated framework amounts to 0.98 g•cm⁻³, which is increased by the ethanol 84 contained in the pores, yielding a total mass-density of the ethanol-soaked HKUST-1 of 1.53 g•cm^{-3.5} A 85 quantitative analysis of the QCM-data yields a BiPh₃ loading of ~ 0.17 g BiPh₃ per 1 g ethanol-soaked 86 87 HKUST-1. This corresponds to a loading of 2-3 BiPh₃ molecules per HKUST-1 unit cell. After loading BiPh₃, the reaction flask with BiPh₃@HKUST-1 sample was taken out from the oven and irradiated with 255 nm UV 88 light for 5 h. Upon irradiation, the solution turns from clear to opaque (Fig. S4). Subsequently, the sample was 89 removed from the reaction solution, rinsed with pure ethanol and dried in dry N₂ gas. Then, the sample was 90 irradiated with 255 nm UV light for 1 h. 91




TEM grid

TEM grid

93 94 (a)

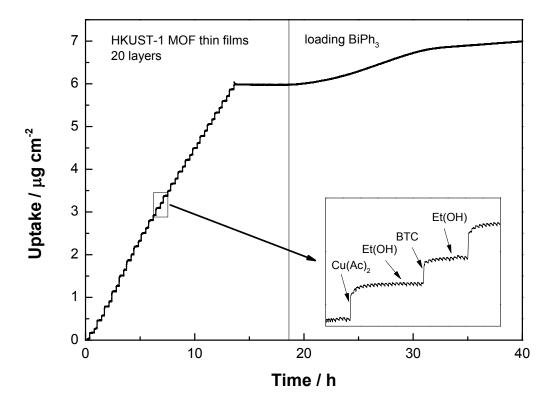
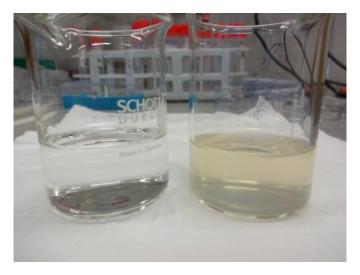
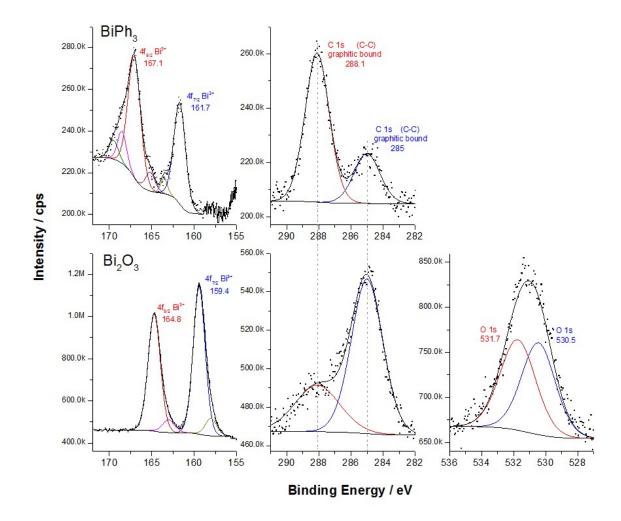
- 97 Figure S1. Synthesis scheme of the Bi₂O₃@HKUST-1 SURMOFs TEM sample preparation by a laser ablation process.
- 98 b) HR-TEM of embedded Bi₂O₃ NPs in the surface of oriented HKUST-1 SURMOF. (c) cryo-SAED diffraction pattern
- 99 of deposited HKUST-1 thin films, see also TableS1.

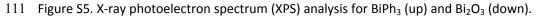
95

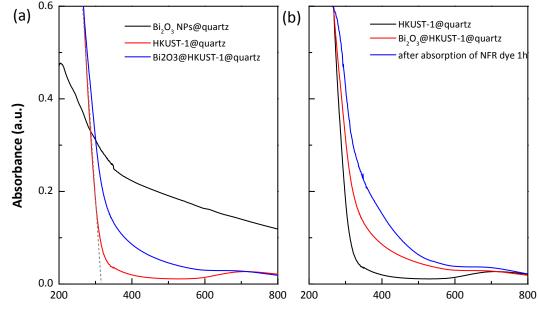
96

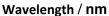
101 Figure S2. Scanning electron micrograph (SEM) of 20 cycles of Cu₃(BTC)₂ MOF thin films (left) and after loading Bi₂O₃

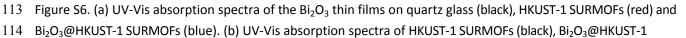
102 (right).


Figure S3. Layer-by-layer growth of the HKUST-1 SURMOF on the QCM sensor with 20 cycles and performed uptake experiment with BiPh₃. The inset is a magnification of the layer-by-layer growth of the SURMOF. (The small oscillations in the curve is from the pump)




107


108 Figure S4. BiPh₃ ethanolic solution before irradiation (left) and after irradiation (right).

115 SURMOFs (red) and Bi₂O₃@HKUST-1 SURMOFs after absorption of NFR dye 1 h (blue).

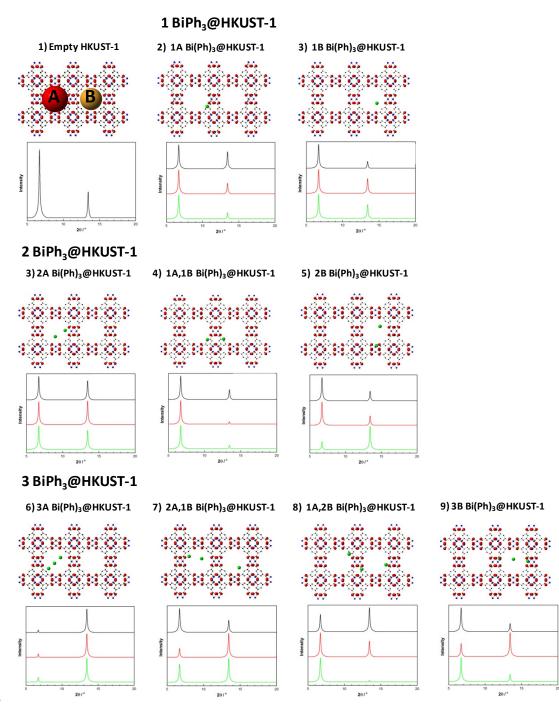
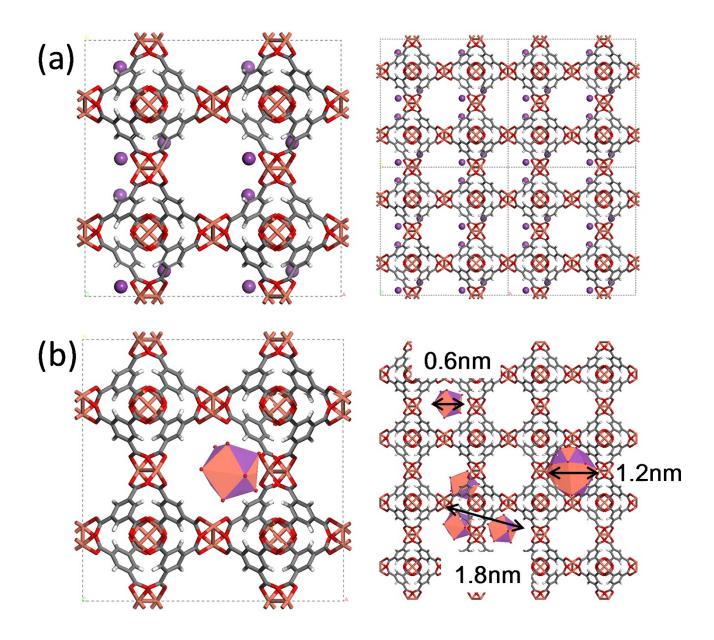
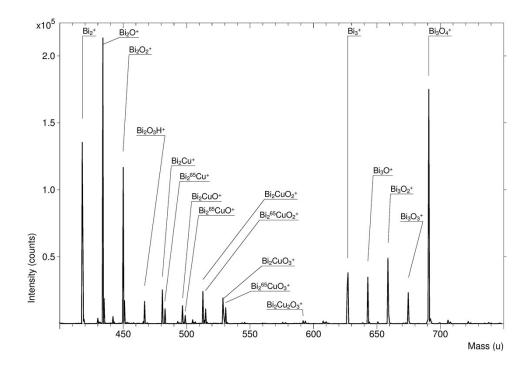




Figure S7. Schematic structure of HKUST-1 (1) (large pore: A, middle pore: B) and after loading different number [single Bi³⁺ in A (1), single Bi³⁺ in B (2), 2 Bi³⁺ in A (3), 1 Bi(Ph)₃ in A and 1 Bi³⁺ in B (4), 2 Bi³⁺ in B (5), 3 Bi³⁺ in A (6), 2 Bi³⁺ in A and 1 Bi³⁺ in B (7), 1 Bi³⁺ in A and 2 Bi³⁺ in B (8), 3 Bi³⁺ in B (9)]. Calculated X-ray diffraction patterns for HKUST-1 before and after loading Bi³⁺ in different plane [(001) plane (up, black line), (010) plane (middle, red line) and (100) plane (down, green line)]. The anion was hidden.

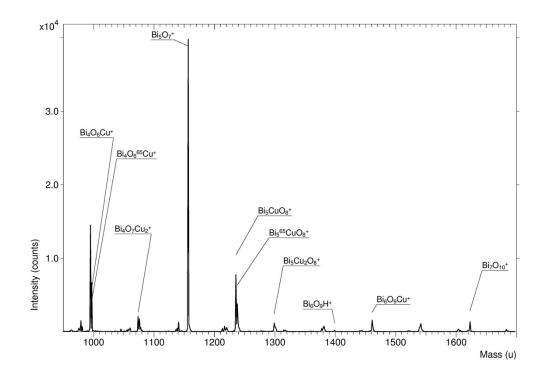
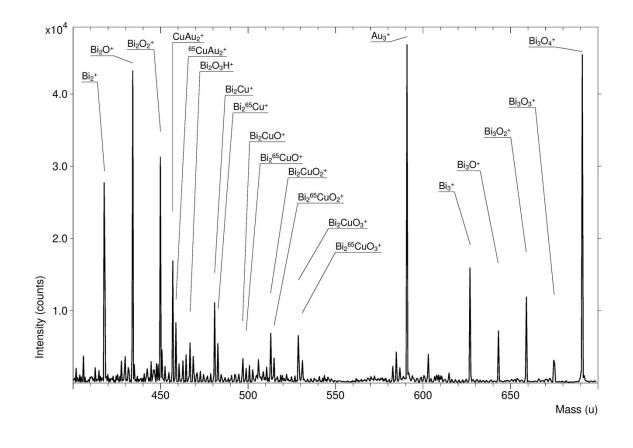

122

Figure S8. a) Infiltration of three BiPh₃ molecules inside an HKUST-1 pore. b) Model of photosynthesized $(Bi_2O_3)_n$ Clusters/NPs with n = 1-5 in the defined pore-space of HKUST-1, avoiding sintering with particles from adjacent pores.

127 Figure S9. Quasi-static SIMS of a Bi_2O_3 @HKUST-1 SURMOF stack performed with C_{60} (20 keV) bunched. 400 < m/z 128 < 750.

130 Figure S10. Quasi-static SIMS of a $Bi_2O_3@HKUST-1$ SURMOF stack performed with C_{60} (20 keV) bunched. 950 <

131 m/z < 1700


As shown in Figs. S9 and S10, the positive polarity secondary ion mass spectrum obtained under quasi-static 132

conditions from a Bi₂O₃@HKUST-1 SURMOF stack is dominated by several bismuth oxides and Bi_xO_vCu₂ cluster 133 134

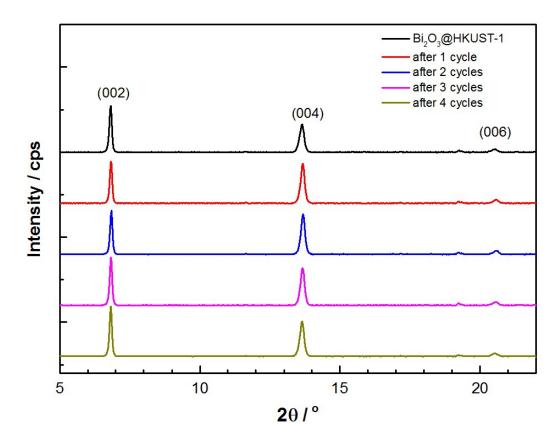
ions. The bismuth oxide fragment Bi₂O shows highest intensity (212 kcts) followed by Bi₃O₄ (170 kcts), Bi₄O₅ 17 (kcts), and Bi₅O₇ (39 kcts). A marked drop in intensity is observed for bismuth oxide clusters bigger than Bi₅O_v.

135

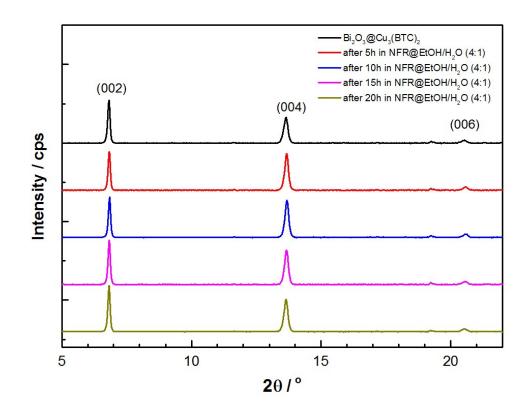
136 Bi_6O_9 is not detectable, Bi_7O_{10} has an intensity of only 1 kcts.

137

Figure S11. Dynamic SIMS of a Bi₂O₃@HKUST-1 SURMOF stack performed with C₆₀ (20 keV, 0.1 pA) bunched 138 139 analysis beam and O_2 (500 eV, 110 nA) sputter beam. 400 < m/z < 700.


140 Under dynamic SIMS conditions, using a high current oxygen sputter beam to erode the surface of a 141 Bi₂O₃@HKUST-1 SURMOF stack gold peaks from the substrate appear and new cluster ions like CuAu₂ are formed 142 due to the mixing process during ion bombardment.

- 144
- 145


148 Table S1: SAED (Selected Area Electron Diffraction) data and lattice spacing (d) for comparison between electron

SAED d	HKUST			
[nm]	[111]			
	d [nm]			
		Н	К	L
0.915	0.93	2	2	0
	0			
0.547	0.53	2	2	4
	7			
0.470	0.46	4	4	0
	5			
0.359	0.35	2	4	6
	1			
0.310	0.31	6	6	0
	0			
0.265	0.26	4	4	8
	8			
0.222	0.21	6	4	1
	3			0

149 diffraction and XRD data of [111] oriented HKUST-1.

157 Figure S13. XRD patterns for Bi₂O₃@HKUST-1 SURMOF in NFR@EtOH/H₂O solution for different times.

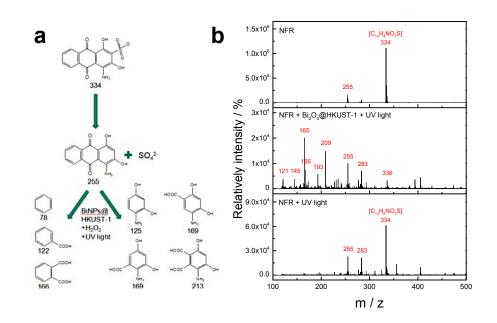


Figure S14. (a) Proposed degradation pathway of NFR using the Bi_2O_3 @ HKUST-1 SURMOF for the photodegradation of NFR under UV light irradiation. (b) ESI-MS of the NFR solution (top), NFR solution after UV light exposure with Bi_2O_3@HKUST-1 SURMOF (middle), and NFR solution after UV light exposure without any catalyst (bottom).

162 As shown in Figure S14, the application of the $Bi_2O_3@HKUST-1$ SURMOF catalysis system leads to an efficient 163 photodegradation of the parent compound, NFR, and to an enhanced formation of smaller photodegradation products. 164

165

166

167 **References**

1 W. Pfleging, R. Kohler, I. Südmeyer and M. Rohde, *Springer Series in Materials Science*, 2013, 161,
319.

170 2 A. Maulana, Z. Suud, K.D. Hermawan, etc, *Prog. Nucl. Energ.*, 2008, 50, 616-620.

- 171 3 H. K. Arslan, O. Shekhah, D. C. F. Wieland, M. Paulus, C. Sternemann, M. A. Schroer, S. Tiemeyer, M.
 172 Tolan, R. A. Fischer and C. Wöll, *J. Am. Chem. Soc.*, 2011, 133, 8158.
- H. K. Arslan, O. Shekhah, J. Wohlgemuth, M. Franzreb, R. A. Fischer and C. Wöll, *Advanced functional materials*, 2011, 21, 4228.
- 175 5 L. Heinke, Z. G. Gu and C. Wöll, *Nat Commun*, 2014, 5.