Supporting Information for

Trap-induced Photoresponse of Solution–Synthesized MoS₂

Youngbin Lee^{1†}, Jaehyun Yang^{2†}, Dain Lee¹, Yong–Hoon Kim^{1,2}, Jin-Hong Park,³ Hyoungsub Kim^{2*} and Jeong Ho Cho^{1,4*}

¹SKKU Advanced Institute of Nanotechnology (SAINT), ²School of Advanced Materials Science and Engineering, ³School of Electronics and Electrical Engineering, ⁴School of Chemical Engineering, Sungkyunkwan University, Suwon 440-746, Korea.

[†]These authors equally contributed to this work. *Corresponding authors: <u>jhcho94@skku.edu</u> and <u>hsubkim@skku.edu</u>

Figure S1. (a) Raman spectra of solution-synthesized MoS₂ films with different precursor concentrations. (b) Relative peak position difference ($\Delta\omega$) between two major Raman modes and AFM thickness of solution-synthesized MoS₂ films as a function of precursor concentrations. (c) UV-Vis absorption spectroscopy of solution-synthesized MoS₂ films with different precursor concentrations. (d) Transfer characteristics of solution-synthesized MoS₂ phototransistor with respect to different channel thickness at a fixed drain voltage of 10 V.

Figure S2. Output characteristics of the solution–synthesized MoS_2 phototransistors as a function of illumination power at a fixed incident illumination wavelength of 520 nm.

Figure S3. (a) MoS₂ channel thickness dependent transfer characteristics ($V_D = 10$ V) of the phototransistors under different illumination wavelengths at a fixed incident illumination power of 0.5 mW. (b) Photo-induced on/off ratio at $V_G = 0$ V of the phototransistors with different MoS₂ channel thickness as a function of the illuminated wavelength. (c) MoS₂ channel thickness dependent transfer characteristics ($V_D = 10$ V) of the phototransistors under different illumination powers at a fixed wavelength of 520 nm. (d) Photo-induced on/off ratio (at $V_D = 0$ V) of the phototransistors as a function of the illumination power.