Highly Crystalline Ni/NiO Hybrid Electrodes Processed by Inkjet Printing and Laser-Induced Reductive Sintering under Ambient Conditions

Yoonsoo Rho¹, Kyung-Tae Kang¹*, Daeho Lee²*

¹Korea Institute of Industrial Technology (KITECH), Ansan 15588, South Korea ²Department of Mechanical Engineering, Gachon University, Seongnam 13120, South Korea

S1. Summary of comparing existing solution-processed Ni or NiO thin film deposition methods along with their respective performance in literature

Author	Material	Process	Designated electrode	Feature Resolution (L: line width, F: film thickness)	Specific Resistivity (nΩ·m)
Liu et al. ^{1*}	Ni ion precursor	Spin coating ^a Oven sintering ^b	NiO	L: not applicable F: ~ 40 nm	None
Huang et al. ^{2*}	50 nm NiO particles	Inkjet printing ^a	NiO	L: not reported F: ~ 16 μm	1.13×10 ¹¹
Li et al. ^{3*}	Ni ion precursor	Reactive inkjet printing ^a	Ni	L: ~ 200 μm F: 5–10 μm	4.62×10 ⁴
Lee et al.4*	3 nm NiO particles	Spin coating ^a Laser reductive sintering ^b	Ni	L: 6.5 μm F: 35–40 nm	6.30×10 ²
This work	3 nm NiO particles	Inkjet printing ^a NiO: Oven Sintering ^b Ni: Laser reductive sintering ^b	NiO or Ni	NiO: L: ~ 50 μm, F: ~ 300 nm Ni: L: ~ 5 μm, F: ~100 nm (single line)	Ni: 1.03×10 ³

^a Material deposition method

^b Subsequent annealing method

* The reference is also cited in the main manuscript.

- S. Liu, R. Liu, Y. Chen, S. Ho, J. H. Kim and F. So, *Chemistry of Materials*, 2014, 26, 4528-4534. 1.
- 2.
- C.-C. Huang, Z.-K. Kao and Y.-C. Liao, ACS Applied Materials & Interfaces, 2013, 5, 12954-12959. D. Li, D. Sutton, A. Burgess, D. Graham and P. D. Calvert, Journal of Materials Chemistry, 2009, 19, 3. 3719-3724.
- D. Lee, D. Paeng, H. K. Park and C. P. Grigoropoulos, ACS Nano, 2014, 8, 9807-9814. 4.