Electronic Supporting Information

Semimetallic MoP₂: An active and stable hydrogen evolution electrocatalyst over the whole pH range

Zonghua Pu, ^a Ibrahim SaanaAmiinu,^a Min Wang,^a Yushi Yang,^a and Shichun Mu^{a*}

[†]State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, Hubei, China

* E-mail: msc@whut.edu.cn

Experimental Section

Materials: Sulfuric acid (H₂SO₄) and oxalic acid (H₂C₂O₄) were purchased from Beijing Chemical Works. Sodium hypophosphite (NaH₂PO₂), potassium phosphate (KH₂PO₄, K₂HPO₄), and potassium hydroxide (KOH) ethanol were purchased from Aladdin Reagent. Sodium fluoride (NaF) and sodium sulfate (Na₂SO₄) were purchased from Xinglong Chemical Corp. Nafion (5 wt%) and Pt/C (20 wt%) were purchased from Sigma-Aldrich. All chemicals were used as received without further purification. De-ionized water (Mini-Q) was employed as solvent.

Preparation of MoO_x NPs/Mo and MoP₂ NPs/Mo: To prepare MoO_x nanoparticles on Mo plate (MoO_x NPs/Mo), Mo plate (1 cm \times 2 cm) was cleaned by ultrasonication with ethanol and water for several times. Electrochemical anodic treatment was carried out in a 100 mL H₂O solution containing 1 mmol Na₂SO₄, 1 mmol NaF and 15 mmol H₂C₂O₄. Anodization was conducted at a

constant current density of 25 mA cm⁻² for 20 min. To obtain MoP₂ NPs/Mo, the as-prepared MoO_x NPs/Mo and NaH₂PO₂ were put into a porcelain boat (Mo to P is 1: 20) and calcined at 750 °C under N₂ atmosphere for 2 h. The loading of MoP₂ NPs on Mo was about ~0.18 mg cm⁻². MoP₂/Mo was also synthesized by first oxidizing bare Mo plate in air at 300 °C for 2 h, followed by phosphidation under similar experimental conditions and used as a control catalyst.

Characterizations: X-ray diffraction (XRD) patterns were collected on a Rigaku Xray diffractometer equipped with a Cu K_{α} radiation source. The morphology and structure were characterized by scanning electron microscopy (SEM, XL30 ESEM FEG) and transmission electron microscopy (TEM, HITACHI H-8100). X-ray photoelectron spectroscopy (XPS) was obtained on an ESCALABMK II X-ray photoelectron spectrometer.

Electrochemical characterization: The electrochemical tests for were performed on a CHI 660E electrochemical workstation using a three-electrode cell configuration. The as-prepared electrodes, was assembled as the working electrode along with graphite rod as auxiliary electrode and Ag/AgCl (3.0 M KCl) as reference electrode. The polarization curves were measured in 0.5 M H₂SO₄ (pH = 0), 1.0 M phosphate buffered solution (PBS, pH = 7) and 1.0 M KOH (pH = 14) at the scan rate of 2 mV s⁻¹ at room temperature (~25 °C), respectively. All measured potentials vs. Ag/AgCl were converted to a reversible hydrogen electrode (RHE) scale. Thus, in 0.5 M H₂SO₄, $E_{RHE} = E_{Ag/AgCl} + 0.197$ V, whereas in 1.0 M PBS, $E_{RHE} = E_{Ag/AgCl} + 0.610$ V, and in 1.0 M M KOH, $E_{RHE} = E_{Ag/AgCl} + 1.023$ V. Electrochemical impedance spectroscopy (EIS) were carried out over the frequency range from 0.01 kHz to 100 Hz with an amplitude of 5 mV. All measured polarization curves were corrected for background current and iR loss.

Fig. S1 SEM image of bare Mo plate.

Fig. S2 SEM image of MoP₂ NPs/Mo.

Fig. S3. EDX spectrum of MoP₂ NPs/Mo.

Fig. S4. (a) XRD pattern and (b) SEM image of the MoP_2/Mo .

Fig. S5. (a) XPS survey spectrum of MoP₂ NPs/Mo. XPS spectrum of (b) Mo 3d and (c) P 2p regions for MoP₂ NPs/Mo.

Fig. S6 (a) Polarization curves of MoP_2 NPs modified carbon electrode. (b) Nyquist plots of MoP_2 NPs/Mo and MoP_2 NPs modified carbon electrode recorded at 0.28 V vs. RHE in 0.5 M H₂SO₄.

Fig. S7. Calculation of exchange current density of MoP₂ NPs/Mo and MoP₂/Mo by applying extrapolation method to the Tafel plot.

Fig. S8 (a) SEM images and (b) XRD pattern of MoP₂ NPs/Mo after the durability measurements.

Fig. S9 Chronopotentiometric curves of MoP_2 NPs/Mo at a constant current density of 20 mA cm⁻² (without iR correction) in (a) 1.0 M PBS and (b) 1.0 M KOH.

The absorption spectrum in the wavelength range of 200–700 nm was measured to study the band structure of MoP₂ NPs (**Fig. S10**). The band-gap value of MoP₂ nanoparticles is 2.8 eV according to the following equation:¹

$$(\alpha hv)^{1/n} = A(hv - E_g) \qquad (1)$$

Where *A* is proportionality constant, *h* is Planck's constant, *v* is the frequency of vibration and α is an absorption coefficient. The value of n depends on the type of optical transition of the semiconductor (*n* = 2 for an indirect transition).

Fig. S10 UV-vis absorption spectrum of the MoP₂ nanoparticles.

Catalyst	Onset η (mV)	Current density (j, mA cm ⁻²)	η at the corresponding j (mV)	Ref.
	50	10	143	T1 · 1
MOP ₂ NPS/MO	50	100	199	I his work
MoP	100	10	246	2
MoP/CF	100	10	200	3
MoP nanoparticle	50	30	180	4
MoP interconnected network nanoparticles	40	10	125	5
amorphous MoP	-	10	90	6
3D MoP	-	10	105	7
$MoS_{2(1-x)}P_x$		10	150	8
MoS ₂ /Mo foil	~150	18.6	300	9
MoS ₂ /Mo	-	10	168	10
amorphous MoS _x	-	10	200	11
MoS _x /graphene/CC	-	100	~225	12
PPy/MoS _x /GCE	60	50	60	13
MoN	-	70	300	14
Mo ₂ C@NC	-	10	124	15

Table S1 Comparison of HER performance in acidic media for MoP_2 NPs/Mo withother Mo-based HER electrocatalysts.

Catalyst	Current density (j, mA cm ⁻²)	Overpotential at the corresponding <i>j</i> (mV)	Ref.
MoP ₂ NPs/Mo	2	152	This mode
	10	211	THIS WOLK
MoP/CF	1	~300	3
MoS_2/Mo	2	172	10
WP NAs/CC	2	95	16
CoP/CC	2	65	17
Co-NRCNTs	2	380	18
FeP/Ti	10	102	19
bulk Mo ₂ C	1	200	20
bulk Mo ₂ B	1	250	20
H ₂ -CoCat/FTO	2	385	22
Co-S/FTO	2	83	22
CuMoS ₄ crystals	2	210	23

Table S2 Comparison of HER performance in neutral media for MoP2 NPs/Mo withother Pt-free HER electrocatalyst.

Catalyst	Current density (j, mA cm ⁻²)	Overpotential at the corresponding <i>j</i> (mV)	Ref.
MoP ₂ NPs/Mo	2	119	This work
	10	194	
MoS ₂ /Mo	2	172	10
WP NAs/CC	10	150	16
CoP/CC	10	209	17
Co-NRCNTs	10	370	18
bulk Mo ₂ B	1	250	20
Ni	10	400	20
Co-S/FTO	1	480	22
Ni ₂ P nanoparticles	20	250	24
Ni wire	10	350	25
Ni-Mo alloy/Ti foil	10	80	25

Table S3 Comparison of HER performance in basic media for MoP_2 NPs/Mo withother Pt-free HER electrocatalyst.

References

- 1 T. Wu, S. Chen, D. Zhang and J. Hou, J. Mater. Chem. A, 2015, 3, 10360-10367.
- 2 X. Chen, D. Wang, Z. Wang, P. Zhou, Z. Wu and F. Jiang, *Chem. Commun.*, 2014, **50**, 11683-11685.
- 3 W. Cui, Q. Liu, Z. Xing, A. M. Asiri, K. A. Alamry and X. Sun, *Appl. Catal. B-Environ.*, 2015, **164**, 144-150.
- P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Y. Wang, K. H. Lim and X. Wang, *Energy Environ. Sci.*, 2014, 7, 2624-2631.
- 5 Z. Xing, Q. Liu, A.M. Asiri and X. Sun, Adv. Mater., 2014, 26, 5702-5707.
- J. M. McEnaney, J. C. Crompton, J. F. Callejas, E. J. Popczun, A. J. Biacchi, N.
 S. Lewis and R. E. Schaak, *Chem. Mater.*, 2014, 26, 4826-4831.
- 7 C. Deng, F. Ding, X. Li, Y. Guo, W. Ni, H. Yan, K. Sun and Y. Yan, J. Mater. Chem. A, 2016, 4, 59-66.
- 8 R. Ye, A. Vicente, Y. Liu, J. A. Jimenez, Z. Peng, T. Wang, Y. Li, B. I. Yakobson, S. Wei, M. J. Yacaman and J. M. Tour, *Adv. Mater.*, 2015, 28, 1427-1432.
- 9 Y. Yang, H. L. Fei, G. D. Ruan, C. S. Xiang and J. M. Tour, *Adv. Mater.*, 2014, 26, 8163-8168.
- 10 Z. Pu, Q. Liu, A. M. Asiri and X. Sun, *Electrochim. Acta*, 2015, 168, 133-138.
- J. D. Benck, Z. B. Chen, L. Y. Kuritzky, A. J. Forman and T. F. Jaramillo, ACS Catal., 2012, 2, 1916-1923.
- 12 A. J. Smith, Y. H. Chang, K. Raidongia, T. Y. Chen, L. J. Li and J. Huang, Adv.

Energy Mater., DOI: 10.1002/aenm.201400398.

- T. Wang, J. Zhuo, K. Du, B. Chen, Z. Zhu, Y. Shao and M. Li, *Adv. Mater.*, 2014, 26, 3761-3766.
- 14 J. Xie, S. Li, X. Zhang, J. Zhang, R. Wang, H. Zhang, B. Pan and Y. Xie, *Chem. Sci.*, 2014, 5, 4615-4620.
- 15 Y. Liu, G. Yu, G. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, Angew. Chem. Int. Ed., 2015, 54, 10752-10757.
- Z. Pu, Q. Liu, A. M. Asiri and X. Sun, ACS Appl. Mater. Interfaces, 2014, 6, 21874-21879.
- J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, 136, 75877590.
- 18 X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, Angew. Chem. Int. Ed., 2014, 126, 4461-4465.
- 19 J. F. Callejas, J. M. McEnaney, C. G. Read, J. C. Crompton, A. J. Biacchi, E. J. Popczun, T. R. Gordon, N. S. Lewis and R. E. Schaak, ACS Nano, 2014, 8, 11101-11107.
- 20 H. Vrubel and X. Hu, Angew. Chem. Int. Ed., 2012, 54, 12703-12706.
- 21 S. Cobo, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, and V. A. Artero, *Nat. Mater.*, 2012, **11**, 802-807.
- 22 Y. Sun, L. Chong, D. Grauer, J. Yano, J. Long, P. Yang and C. Chang, J. Am. Chem. Soc., 2013, 135, 17699-17702.

- P. Tran, M. Nguyen, S. Pramana, A. Bhattacharjee, S. Chiam, J. Fize, M. Field,
 V. Artero, L. Wong, J. Loo and J. Barber, *Energy Environ. Sci.*, 2012, 5, 8912-8916.
- 24 L. Feng, H. Vrubel, M. Bensimon and X. Hu, *Phys. Chem. Chem. Phys.*, 2014, 16, 5917-5921.
- J. McKone, B. Sadtler, C. Werlang, N. S. Lewis and H. Gray, *ACS Catal.*, 2013, **3**, 166-169.